Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 45-51    https://doi.org/10.11896/j.issn.1005-023X.2017.012.010
  材料研究 |
钛酸钾含量对汽车摩擦材料性能的影响*
刘伯威1,2, 徐菲2, 刘咏1, 杨阳2, 唐兵2
1 中南大学粉末冶金研究院, 长沙 410083;
2 湖南博云汽车制动材料有限公司, 长沙 410205
Influences of Potassium Titanate Content on the Performance of Automobile Brake Materials
LIU Bowei1,2 , XU Fei2, LIU Yong1, YANG Yang2, TANG Bing2
1 Powder Metallurgy Research Institute, Central South University, Changsha 410083;
2 Hunan Boyun Automobile Brake Materials Co.,Ltd., Changsha 410205
下载:  全 文 ( PDF ) ( 2062KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钛酸钾是替代石棉用于摩擦材料中的一种新兴增强材料。以一种低金属陶瓷配方为基础,采用粉末冶金法制备钛酸钾增强摩擦材料,研究钛酸钾含量(质量分数,%)对摩擦材料的物理性能、力学性能、摩擦磨损性能及制动噪音的影响。结果表明,随钛酸钾含量增加,摩擦材料的气孔率增加,密度降低,pH值增加;洛氏硬度增加,压缩性及内剪切强度降低;摩擦系数稳定性增强,磨损量先降低后增加;噪音发生频次先降低后增加。钛酸钾含量为12%时,磨损量最低,噪音表现最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘伯威
徐菲
刘咏
杨阳
唐兵
关键词:  鳞片六钛酸钾  物理性能  力学性能  摩擦磨损性能  制动噪音    
Abstract: The potassium titanate flakes is a new type of reinforced material replacing asbesto used for friction material. The potassium titanate enhanced friction materials were prepared by powder metallurgy method based on a mature low metal ceramic formula. The influence of potassium titanate content (mass fraction, wt%) on the physical performance, mechanical property, friction and wear properties, and brake noise of the friction materials were investigated. The results indicate that with the increase of potassium titanate content, the porosity of friction material, pH value and Rockwell hardness value increased, while the density, compressibility and inner shear strength decreased. The stability of the friction coefficient was improved and the wear loss decreased firstly then increased. The change of the brake noise occurring frequence showed the same trend as the wear loss. When the potas-sium titanate content was 12%, the wear loss was the lowest, and the noise performance was the best.
Key words:  six potassium titanate flakes    physical performance    mechanical property    friction and wear properties    brake noise
               出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  U465  
基金资助: *国家重点实验室专项经费(621020009)
通讯作者:  徐菲:通讯作者,女,1986年生,硕士,研究方向为汽车摩擦材料 E-mail:xufeisnow@163.com   
作者简介:  刘伯威:男,1966年生,副教授,研究方向为汽车摩擦材料 Tel:0731-88122568 E-mail:bykf@vip.sina.com
引用本文:    
刘伯威, 徐菲, 刘咏, 杨阳, 唐兵. 钛酸钾含量对汽车摩擦材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 45-51.
LIU Bowei , XU Fei, LIU Yong, YANG Yang, TANG Bing. Influences of Potassium Titanate Content on the Performance of Automobile Brake Materials. Materials Reports, 2017, 31(12): 45-51.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.010  或          http://www.mater-rep.com/CN/Y2017/V31/I12/45
1 Yuan Rongping. Brake friction materials: Performance evalution, ecological friendliness and their wear mechanisms[D].Beijing:Beijing University of Chemical Technology,2010:23(in Chinses).
员荣平. 制动摩擦材料的性能评价、环境友好性和摩擦机理研究[D]. 北京:北京化工大学,2010:23.
2 Song Runzhou. Preparation and study on the new type of anti-heat-fade friction material[D]. Zibo:Shandong University of Technology,2007:28(in Chinese).
宋润州. 新型抗热衰退摩擦材料的制备与研究[D]. 淄博:山东理工大学,2007:28.
3 Wang Hui. A study on the preparation of potassium titanate, the whisers and the character of reinforcement used in PP[D].Wuxi: Jiangnan University,2011(in Chinese).
王慧. 钛酸钾及钛酸钾晶须的制备及其补强性质的研究[D]. 无锡:江南大学,2011.
4 Jing Xiaoming, Lu Jiamei, Ma Chen, et al. Research status and development prospects of potassium titanate whisker [J]. J Southwest University for Nationalities:Nat Sci Ed,2008(3):539(in chinese).
景晓明, 卢佳美, 马晨, 等. 钛酸钾晶须研究现状及发展前景[J]. 西南民族大学学报:自然科学版,2008(3):539.
5 Bai Kejiang, Wang Weiping. Potassian titanate′s application of friction material[J]. Tianjin Auto,2008(8):58(in Chinese).
白克江,王伟平. 六钛酸钾在摩擦材料中的应用[J]. 天津汽车,2008(8):58.
6 Xu Yanji. Study on fabrication, growth mechanism and microstructure of K2Ti6O13[D]. Tianjin:Tianjin University,2005(in Chinese).
徐艳姬.K2Ti6O13晶须的制备、生长机理及微结构研究[D].天津:天津大学,2005.
7 Hua Manyu, Li Yimin, Li Xia. Frist-principles calculation of the geometric con figuration, energies and electronic structures of potassium hexatitanate whisker[J]. J Synth Cryst,2011(6):1573(in Chinese).
华熳煜,李益民,李夏. 六钛酸钾(K2Ti6O13)晶须几何构型、能量及电子结构的第一性原理计算[J]. 人工晶体学报,2011(6):1573.
8 Chen Kangkang, Wang Gang, Wang Laiwen. Study on growing mechanism of potassium hexatitanate whisker[J]. Bull Chin Ceram Soc,2010(4):922(in Chinese).
陈康康,王刚,王来稳. 六钛酸钾晶须的生长机理研究[J]. 硅酸盐通报,2010(4):922.
9 Yun Cheol Kim, Min Hyung Choa, Seong Jin Kim.The effect of phenolic resin, potassium titanate, and CNSL on the tribological properties of brake friction materials[J]. Wear,2008,264:204.
10 吴训锟, 王浩, 王昌松, 等. 摩擦材料中钛酸钾应用的关键问题[C]//第八届(北京)国际摩擦密封材料技术交流暨产品展示会论文集. 中国摩擦密封材料协会,2006:4.
11 Chen Xuhuang, Ling Xiuju, Lu Lihong. Treating surface and applications of potassium titanate whiskers in polymer[J]. Plastics Ma-nufacture,2007(Z1):53(in Chinese).
陈绪煌,凌秀菊,卢丽红. 六钛酸钾晶须的表面处理及其在高分子材料中的应用[J]. 塑料制造,2007(Z1):53.
12 Chen Weiping. The study of the surface modification and characte-rization and interface property of potassium titanate whiskers[D]. Nanjing:Nanjing University of Technology,2004(in Chinese).
陈卫平. 钛酸钾晶须的表面改性和表征及界面性质的研究[D]. 南京:南京工业大学,2004.
13 Yang Yang. Study on the third body on the surface of brake disc material[D]. Beijing:Beijing Jiaotong University,2012(in Chinese).
杨洋. 制动盘材料表面第三体的研究[D]. 北京:北京交通大学,2012.
14 Meng Dejian, Zhang Lijun, Yu Zhuoping. Theoretical modeling and FEA of thermomechanical coupling dynamics of ventilated disc brake[J]. Tongji University:Nat Sci,2010(6):890(in Chinese).
孟德建, 张立军, 余卓平. 通风盘式制动器热机耦合理论建模与分析[J]. 同济大学学报:自然科学版,2010(6):890.
15 Zhou Wenbin. Effects of Nb in high CE gray iron and its application for production of brake discs[D].Shanghai:Shanghai University,2010(in Chinese).
周文彬. 铌在高碳当量灰铸铁中的作用及在制动盘生产中的应用[D]. 上海:上海大学,2010.
16 Wang Shang, Zhang Yujun, Zhao Dongliang. Effect of sodium (potassium) titanate whiskers on the property of resin-based friction materials[J]. China Ceram,2010(6):11(in Chinese).
王尚, 张玉军, 赵东亮. 六钛酸钠(钾)混合晶须对树脂基摩擦材料性能的影响[J]. 中国陶瓷,2010(6):11.
17 Chen Yao, He Lin, Ding Xu. Study on the properties of mineral fiber friction materials composited by PTW/kevlar/palygorskite[J]. Lubrication Eng,2011(2):81(in Chinese).
程尧, 何林, 丁旭. 钛酸钾晶须/芳纶/坡缕石复合矿物纤维摩擦材料的摩擦性能研究[J]. 润滑与密封,2011(2):81.
18 Chen Yao, He Lin, Zhou Yuankang, et al. Study on friction property of palygorskite resin composites with PTW modified by stearic acid[J]. Mater Eng,2010(11):57(in Chinese).
程尧, 何林, 周元康, 等. 硬脂酸处理钛酸钾晶须对坡缕石纤维树脂摩擦材料摩擦性能的研究[J]. 材料工程,2010(11):57.
19 Liu Juan. Study of the hybid fibers on friction performance of vehicle brake pad[D]. Guiyang:Guizhou University,2007(in Chinese).
刘娟. 混杂纤维对盘式制动器衬片性能影响的研究[D]. 贵阳:贵州大学,2007.
20 Pan Yunjuan. Study of friction and wear properties and mechanism of semi metal friction materials used in vehicles[D]. Changsha:Central South University, 2002(in Chinese).
潘运娟. 汽车半金属摩擦材料的摩擦磨损性能及机理研究[D]. 长沙:中南大学,2002.
21 Cui Zhifeng, et al. A discussion on automobile brake noise[J]. China Sci Technol Rev,2012(28):526(in Chinese).
崔志峰,等. 汽车制动噪音的探讨[J]. 中国科技博览,2012(28):526.
22 Chen Yao, He Lin. Effects of titanium potassium whisker on mate-rials braking noise reduction[J]. Noise Vibration Control,2013(1):218(in Chinese).
程尧, 何林. 钛酸钾晶体降噪材料对制动噪声的影响[J]. 噪声与振动控制,2013(1):218.
23 Wang Chaoyang. Squeal propensity analysis and optimization of automobile disc brake system[D]. Shanghai:Shanghai Jiao Tong University,2008(in Chinese).
王朝阳. 汽车盘式制动器尖叫倾向性分析与设计改进[D]. 上海:上海交通大学,2008.
24 Jia Hongyu. Study on the influence of friction material viscoelasticity on disc brake-shoe′s vibration and braking noise[D]. Wuhan:Wuhan University of Technology,2003(in Chinese).
贾宏禹. 材料的粘弹性对摩擦片振动与制动噪声的影响研究[D]. 武汉:武汉理工大学,2003.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[13] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[14] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[15] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed