Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 39-44    https://doi.org/10.11896/j.issn.1005-023X.2017.012.009
  材料研究 |
粗晶TM52钢结硬质合金的冲击磨料磨损性能研究*
李志华, 肖平安, 李晨坤, 刘洋, 宋建勇, 陈超
湖南大学材料科学与工程学院, 长沙 410082
Study on Impact Abrasive Wear of Coarse Grained TM52 High Manganese Steel Bonded Carbides
LI Zhihua, XIAO Ping’an, LI Chenkun, LIU Yang, SONG Jianyong, CHEN Chao
College of Materials Science and Engineering,Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 1698KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 系统对比研究了粗晶粒TM52钢结硬质合金与分别采用真空烧结和低压烧结制备的细晶粒TM52钢结硬质合金在不同冲击功工况下的抗磨料磨损性能与行为,并在对磨损面形貌进行电镜观察分析的基础上探讨了粗晶粒TM52钢结硬质合金的磨损机理。研究发现,粗晶TM52合金的抗磨料磨损性能随着冲击功的逐步提高呈现先下降后增强的变化规律,这与其高锰钢基体在高冲击功条件下的高硬化速率及硬化效果更快、更充分有关。相对于细晶粒钢结硬质合金,粗晶粒TM52钢结硬质合金在抗冲击磨料磨损方面具有明显的性能优势,尤其在高冲击功(3~4 J/cm2)条件下,耐磨性能可提高40%~80%。在此工况下磨损机制主要为碾碎性磨料磨损、擦伤式磨料磨损和疲劳磨损,凿削式磨料磨损不明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李志华
肖平安
李晨坤
刘洋
宋建勇
陈超
关键词:  粗晶粒  钢结硬质合金  冲击磨料磨损  冲击功    
Abstract: The impact abrasive wear resistance of coarse grained TM52 steel bonded carbide was systematically evaluated. And it was compared with the normal fine grained TM52 which were sintered in vacuum and at low pressure (about 5 MPa) under diffe-rent impact energy working condition. Then the wear mechanism of coarse grain TM52 was investigated based on the electron microscopy inspection analysis of its wear surface. The results revealed that the impact abrasive wear resistance of the coarse grained TM52 steel bonded carbide decreased first and increased later with the gradual improvement of the impact load, which was closely related to the high hardening rate and hardening effect of high manganese steel matrix under high impact energy conditions. The impact abrasive wear resistance of coarse grained TM52 steel bonded carbide had obvious advantages compared with fine grained TM52, especially under the high impact energy (3-4 J/cm2), the wear-resisting performance increased by 40%-80%. Its wear mechanism mainly includes grinding abrasion, scratch abrasion and fatigue abrasion, while chisel cutting abrasion was not obvious.
Key words:  coarse grain    steel bonded carbide    impact abrasive wear    impact energy
               出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TF125  
基金资助: *国家自然科学基金(51574119);湖南省自然科学基金(13JJ3043)
通讯作者:  肖平安:通讯作者,男,1962年生,教授,主要从事粉末冶金耐磨材料方面的研究 E-mail:changcluj@163.com   
作者简介:  李志华:男,硕士研究生,主要研究方向为粉末冶金耐磨材料 E-mail:lizhihuahnu@163.com
引用本文:    
李志华, 肖平安, 李晨坤, 刘洋, 宋建勇, 陈超. 粗晶TM52钢结硬质合金的冲击磨料磨损性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 39-44.
LI Zhihua, XIAO Ping’an, LI Chenkun, LIU Yang, SONG Jianyong, CHEN Chao. Study on Impact Abrasive Wear of Coarse Grained TM52 High Manganese Steel Bonded Carbides. Materials Reports, 2017, 31(12): 39-44.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.009  或          http://www.mater-rep.com/CN/Y2017/V31/I12/39
1 Li Meng, Cheng Juqiang, et al. Development of wear-resistant materials for crusher hammers and their manufacturing process[J]. Mining Machine,2012,40(7):67(in Chinese).
李梦,程巨强,等.破碎机锤头耐磨材料与制造工艺的发展[J].矿山机械,2012,40(7):67.
2 Chai Zengtian, Yu Liguo. Development of hammer crusher production process[J]. Mining Machine,2005,33(1):24(in Chinese).
柴增田,于立国.破碎机锤头生产工艺发展现状[J].矿山机械,2005,33(1):24.
3 Li Pengzhi. Progress in research on bimetal compound casting technology for crusher head [J].Metal Mine,2008(5):96(in Chinese).
李鹏志.破碎机锤头双金属复合铸造工艺的研究进展[J].金属矿山,2008(5):96.
4 Ferreira J A M, Pina Amaral M A.A study on the mechanical behavior of WC/Co hardmetal[J]. Int J Refractory Metal Hard Mater,2009,27:1.
5 Li Yong, Xie Shuhua. Research progress on WC coarse grain cemented carbide[J]. Mater Res Appl,2009,3(2):77(in Chinese).
李勇,谢淑华.WC粗晶硬质合金的研究进展[J].材料研究与应用,2009,3(2):77.
6 Guo Shengda,Yang Jiangao, Chen Hao. Research status of coarse grain WC-Co cemented carbide[J].Powder Metall Ind,2009,21(4):58(in Chinese).
郭圣达,羊建高,陈颢.粗晶粒WC-Co类硬质合金研究现状[J].粉末冶金工业,2009,21(4):58.
7 Zhang Li,Wang Yuanjie,Yu Xianwang, et al. The effect of WC powder particle size and morphology on WC cemented carbide′s grain size,grain morphology and properties[J].China Tungsten Ind,2008,23(4):23(in Chinese).
张立,王元杰,余贤旺,等.WC粉末粒度与形貌对硬质合金中WC晶粒度、晶粒形貌与合金性能的影响[J].中国钨业,2008,23(4):23.
8 Wang Hongfa.Present status and outlook of mateal wear resistant materials[J].Foundry,2000, 49(1):577(in Chinese).
王洪发.金属耐磨材料的现状与展望[J].铸造,2000,49(1):577.
9 Fu Hanguang. Progress in the study of wear resistant cast metal material[J].China Foundry Machinery Technol,2006(6):2(in Chinese).
符寒光.铸造金属耐磨材料研究的进展[J].中国铸造装备与技术,2006(6):2.
10 Shi J H, He X F. Study on technology for carburization of high qua-lity coarse-grained W[J].Rare Metals Lett,2005,10:28.
11 Reeder, David A, Burwick. Uniform coarse tungsten carbide powder and cemented tungsten carbide article and process for producing same: US, 5071473[P].1991-01-08.
12 Anon. Super coarse grained cemented carbide preparation 2: US, 5529804[P].1997-08-11.
13 Anon. Super coarse grained cemented carbide preparation: US, 5505902[P].1996-04-23.
14 Huang Xin. Study on high quality coarse WC powder and cemented carbide[D].Chongqing: Chongqing University,2004(in Chinese).
黄新.优质粗晶WC粉末及合金的研制[D].重庆:重庆大学,2004.
15 Zhou Jianhua, Lu Weimin. Analysis of present production and latest development of cemented carbide both at home and abroad[J].Rare Metal Cemented Carbides, 2006,34(1):36(in Chinese).
周建华,卢伟民.国内外硬质合金生产现状及近期发展动向分析[J].稀有金属与硬质合金,2006,34(1):36.
16 Zhang Weibing, Liu Xiangzhong, Chen Zhenhua. Latest development of WC-Co cemented carbides[J].Chin J Rare Metal,2015,39(2):178(in Chinese).
张卫兵,刘向中,陈振华.WC-Co硬质合金最新进展[J].稀有金属,2015,39(2):178.
17 Luo Guifu, Wu Jianguo. Research progress on coarse grain cemented carbide[J].Cemented Carbide,2013,30(1):46(in Chinese).
罗桂甫,吴建国.粗晶硬质合金的研究进展[J].硬质合金,2013,30(1):46.
18 Chu Kaiyu. The latest development and prospect of cemented carbide industry in China[J]. Rare Metal Cemented Carbides,2011,39(1):52(in Chinese).
储开宇.我国硬质合金产业的发展现状与展望[J].稀有金属与硬质合金,2011,39(1):52.
19 Ding Guoxin. Modification of UHMWPE and the application in mi-neral processing[D]. Huainan: Anhui University of Science and Technology,2007(in Chinese).
丁国新.UHMWPE的改性及其在选矿设备中的应用[D].淮南:安徽理工大学,2007.
20 Zu Fangqiu, Li Xiaoyun, Liu Lanjun. Research on organization and the mechanism of work hardening of high manganese steel under different relative impact energy[J]. Trans Mater Heat Treatment,2006,27(2):71(in Chinese).
祖方遒,李小蕴,刘兰俊.不同相对冲击功下高锰钢组织与加工硬化机制的研究[J].材料热处理学报,2006,27(2):71.
21 Lindroos, Apostol M. The deformation, strain hardening, and wear behavior of chormium-alloyed hadfield steel in abrasive and impact conditions[J]. Tribology Lett, 2015,57(3):47.
22 Dastur Y N, Leslie W C. Mechanism of work hardening in hadfield manganese steel[J]. Metall Trans A,1981,12(5):56.
23 Li Xiaoyun, Zu Fangqiu. Research on the ability of work hardening of high manganese steel at the condition of simulating actual work[J].Foundry,2005,54(5):462(in Chinese)
[1] 张春芝, 孔令亮, 李辉平. 镍添加对粉末冶金Al94.5Cu4Mg1.5耐腐蚀性能的提升作用*[J]. 《材料导报》期刊社, 2017, 31(20): 39-43.
[2] 鲍贤勇, 张峰, 鲁忠臣, 曾美琴, 朱敏. 低压烧结温度对一步法制备超细晶WC-Co基硬质合金组织及性能的影响[J]. 《材料导报》期刊社, 2017, 31(16): 65-71.
[3] 宋凯强, 曾美琴, 朱敏, 胡仁宗, 鲁忠臣. 纳米相复合Al-Sn合金的反应球磨制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 68-72.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed