Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 20070058-10    https://doi.org/10.11896/cldb.20070058
  无机非金属及其复合材料 |
基于异质结构忆阻器的研究进展
陈晓平1, 楼玉民2,3, 赵宁宁2,3, 黄一君2,3, 胡海龙1, 岳建岭1,*
1 中南大学航天航空学院,长沙 410083
2 浙江浙能技术研究院有限公司,杭州 310003
3 浙江省火力发电高效节能与污染物控制技术研究重点实验室,杭州 311121
Research Progress of Memristor Based on Heterostructure
CHEN Xiaoping1, LOU Yumin2,3, ZHAO Ningning2,3, HUANG Yijun2,3, HU Hailong1, YUE Jianling1,*
1 School of Aeronautics and Astronautics, Central South University, Changsha 410083, China
2 Zhejiang Energy Group R & D Institute Co., Ltd., Hangzhou 310003, China
3 Zhejiang Key Laboratory of Research on High Efficiency Energy Saving and Pollutant Control Technology of Thermal Power Generation, Hangzhou 311121, China
下载:  全 文 ( PDF ) ( 9643KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 忆阻器是当前最具应用前景的下一代非易失性存储器之一,在新型非易失性存储、逻辑运算和大脑神经功能模拟方面都展现出巨大的应用潜力。目前忆阻器阻变参数的弥散性和较差的器件重复性是制约其进一步发展的重要因素。
   采用异质结构的设计方法使组成材料的选择更加丰富多样,通过改变插入层厚度能够实现其结构和相对成分的灵活调控,同时材料内部构筑的界面异质结所产生的界面势垒、电荷诱捕效应等对忆阻器性能有额外附加调节作用,因而异质结构设计成为调控忆阻器性能和揭示忆阻器阻变机理的一种非常有效的方法。与单层氧化物忆阻器相比,异质结构的忆阻器在器件的功耗、稳定性和耐久性方面都有很大程度的改善,因此其在模拟人工突触和神经形态电路应用方面具有独特的优势。
   本文综述了异质结构忆阻器的最新研究进展,主要对异质结构忆阻器材料体系的选择与适配、器件结构设计、性质调控、机理以及应用进行了介绍,指出了目前异质结构忆阻器研究中需要关注的主要问题。本文有望为异质结构忆阻器的设计、制备和应用提供参考及借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈晓平
楼玉民
赵宁宁
黄一君
胡海龙
岳建岭
关键词:  忆阻器  异质结构  开关特性  阻变机制  人工突触    
Abstract: Memristor is one of the most promising next-generation non-volatile memories, showing great application potential in new non-volatile storage, logic operation and brain nerve function simulation. At present, due to the dispersion of memristor resistance changing parameters as well as poor device repeatability, further development has been seriously hindered.
The selected materials in constituent are becoming more abundant and diverse owing to the varied heterogeneous structural design methods. The structure and relative composition of heterostructure can be tuned with great flexibility through changing the thickness of the inserted layer. On the other hand, the interface barriers and charge trapping effects induced by the artificially constructed interface heterojunction inside the material have been placing additional adjustments to the improved performance of the memristor, which is believed to be a very effective method for regulating the performance of memristors and revealing the mechanism of memristor resistance changes. By studying heterostructure memristors, it is acknowledged that the power consumption of a single device, the stability of a device, and the durability of a device have a pronounced improvement compared to that of single-layer oxide devices. The heterostructural memristor has unique advantages in simulating artificial synapse and neuromorphic circuit applications.
This work summarizes the latest research progress of heterostructural memristors, including the selection and suitability of material system, device structural design, property, mechanism and its potential application, and the limitations of current study are pointed out. This review aims to offer a certain basis for the structural design, preparation and application of heterostructure memristors.
Key words:  memristor    heterostructure    switching characteristics    resistance mechanism    artificial synapse
发布日期:  2022-05-24
ZTFLH:  TM23  
基金资助: 国家自然科学基金(51775560);高温合金螺栓表面抗氧化涂层研究项目(JSYJY-JS-2019-059)
通讯作者:  jlyue2010@csu.edu.cn   
作者简介:  陈晓平,2015年6月毕业于西南石油大学,获得工学学士学位。现为中南大学航空航天学院硕士研究生,在岳建岭教授的指导下进行研究。目前主要研究领域为氧化物异质结构忆阻器。
岳建岭,博士,中南大学教授,博士研究生导师。中国真空学会薄膜材料专业委员会委员,新型特种纤维及其复合材料湖南省重点实验室副主任。主要从事材料表面改性与防护、电磁吸波与屏蔽材料、复合材料界面改性等领域的工作,在涂层材料设计、制备技术、结构表征、性能测量等研究领域积累了较为丰富的经验。迄今为止,已先后主持和承担了多项中国国家自然科学基金、国防863项目和校企横向合作开发等国家级、省部级科研项目。目前在国内外学术期刊上已发表SCI/EI检索的学术论文50余篇,授权发明专利10余项。
引用本文:    
陈晓平, 楼玉民, 赵宁宁, 黄一君, 胡海龙, 岳建岭. 基于异质结构忆阻器的研究进展[J]. 材料导报, 2022, 36(10): 20070058-10.
CHEN Xiaoping, LOU Yumin, ZHAO Ningning, HUANG Yijun, HU Hailong, YUE Jianling. Research Progress of Memristor Based on Heterostructure. Materials Reports, 2022, 36(10): 20070058-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070058  或          http://www.mater-rep.com/CN/Y2022/V36/I10/20070058
1 Chua L. IEEE Transactions on Circuit Theory,1971, 18(5),507.
2 Strukov D B,Snider G S,Stewart D R, et al. Nature,2008, 453(7191),80.
3 Jo S H,Kim K H,Lu W. Nano Letters,2009, 9(1),496.
4 Pershin Y V,La F S,Di V M. Physical Review E,2009, 80(2), 219261.
5 Li Q J, Liu H J, Xu H, et al. National Defense Science & Technology, 2016, 37(6), 9 (in Chinese).
李清江,刘海军,徐晖. 国防科技,2016, 37(6),9.
6 Jo S H,Chang T,Ebong I, et al. Nano Letters,2010, 10(4),1297.
7 Jo S H,Kim K H,Lu W. Nano Letters,2009, 9(2),870.
8 Linn E,Rosezin R,Kuegeler C, et al. Nature Materials,2010, 9(5),403.
9 Pershin Y V,Di V M. IEEE Transactions on Circuits and Systems I-Regular Papers,2010, 57(8),1857.
10 Xia Q,Robinett W, Cumbie M W, et al. Nano Letters,2009, 9(10),3640.
11 Yang Y C,Pan F,Liu Q, et al. Nano Letters,2009, 9(4),1636.
12 Borghetti J, Snider G S, Kuekes P J, et al. Nature,2010, 464(7290),873.
13 Snider G S. In:2008 IEEE International Symposium on Nanoscale Architectures. Anaheim, 2008, pp. 85.
14 Yang J J,Strukov D B, Stewart D R. Nature Nanotechnology,2013, 8(1),13.
15 Kao M C, Chen H Z, Young S L, et al. Materials (Basel, Switzerland),2017, 10(11), 1327.
16 Wang J, Liang D, Li X, et al. Materials Research Express,2018, 5(12), 125007.
17 Wang L G, Cao Z Y, Qian X, et al. ACS Applied Materials & Interfaces,2017, 9(7),6634.
18 Xie J, Cheng B,Liu L, et al. Materials Research Express,2019, 6(9), 96428.
19 Khan A H, Atiq S, Anwar M S, et al. Journal of Materials Science-Materials in Electronics,2018, 29(14),11812.
20 Lee T H, Elliott S R. Physica Status Solidi B-Basic Solid State Physics,2012, 249(10),1886.
21 Liu Q,Guan W,Long S, et al. Applied Physics Letters,2008, 92(1), 12117.
22 Maas K, Villepreux E, Cooper D, et al. Advanced Functional Materials,2020, 30(17), 1909942.
23 Matveyev Y A, Markeev A M, Lebedinskii Y Y, et al. Thin Solid Films,2014, 563, 20.
24 Guo X, Schindler C. Applied Physics Letters,2007, 91(13), 133513.
25 Kozicki M N,Gopalan C, Balakrishnan M, et al. IEEE Transactions on Nanotechnology,2006, 5(5),535.
26 Li Y, Long S, Lv H, et al. IEEE Electron Device Letters,2011, 32(3),363.
27 Li Y, Long S, Zhang M, et al. IEEE Electron Device Letters,2010, 31(2),117.
28 Kumar S,Rath C. Physica Status Solidi A-Applications and Materials Science,2020, 217(1), 1900756.
29 Roy S,Niu G,Wang Q, et al. ACS Applied Materials & Interfaces,2020, 12(9),10648.
30 Wang Y,Niu G,Wang Q, et al. Nanotechnology,2020, 31(20),205203.
31 Zhao L,Clima S,Magyari K B, et al. Applied Physics Letters,2015, 107(1), 13504.
32 Cantley K D,Subramaniam A,Stiegler H J, et al. IEEE Transactions on Nanotechnology,2011, 10(5),1066.
33 Chang Y F,Tsai Y T,Syu Y E, et al. ECS Journal of Solid State Science and Technology,2012, 1(3),Q57.
34 Kim S,Abbas Y,Jeon Y R, et al. Nanotechnology,2018, 29(41), 415204.
35 Liu S,Sun Y,Song B, et al. Physics Letters A,2019, 383(30), 125877.
36 Srivastava S,Thomas J P,Leung K T. Nanoscale,2019, 11(39),18159.
37 Lee J, Bourim E M, Lee W, et al. Applied Physics Letters,2010, 97(17), 172105.
38 Sun X W. Study on preparation and performance of SrTiO3-based resis-tance change memory. Master's Thesis, Henan University, China, 2012.(in Chinese).
孙献文. SrTiO3基阻变存储器的制备和性能研究. 硕士学位论文, 河南大学, 2012.
39 Smirnov V A,Tominov R V,Avilov V I, et al. Semiconductors,2019, 53(1),72.
40 Gul F. Applied Nanoscience,2019, 10(2),611.
41 Wang Q,Niu G,Roy S, et al. Journal of Materials Chemistry C,2019, 7(40),12682.
42 Kim C H, Ahn Y, Son J Y. Journal of the American Ceramic Society,2016, 99(1),9.
43 Siddiqui G U, Rehman M M, Choi K H. Polymer,2016, 100,102.
44 Wu Y, Wei Y, Huang Y, et al. Nano Research,2017, 10(5),1584.
45 Chang T Y, Cheng Y W, Lee P T. Applied Physics Letters,2010, 96(4), 43309.
46 Ma L P, Liu J, Yang Y. Applied Physics Letters,2002, 80(16),2997
47 Nagashima K, Koga H, Celano U, et al. Scientific Reports,2014, 4, 5532.
48 Son D I, Kim T W,Shim J H, et al. Nano Letters,2010, 10(7),2441.
49 Verbakel F, Meskers S C J, Janssen R A J. Chemistry of Materials,2006, 18(11),2707.
50 Li H, Ye L, Xu J, et al. In:2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO). Sendai, 2016, pp. 861.
51 Wang M, Cai S, Pan C, et al. Nature Electronics,2018, 1(2),130.
52 Terai M, Sakotsubo Y, Kotsuji S, et al. IEEE Electron Device Letters,2010, 31(3),204.
53 Prakash A, Maikap S, Lai C S, et al. Japanese Journal of Applied Phy-sics,2012, 51(4), 40006.
54 Choi J H, Das S N, Myoung J M. Applied Physics Letters,2009, 95(6), 62105.
55 Yoon J, Choi H, Lee D, et al. IEEE Electron Device Letters,2009, 30(5),457.
56 Liu X, Sadaf S M, Son M, et al. Nanotechnology,2011, 22(47), 475702.
57 Cui H P,Li J C,Yuan H L. RSC Advances,2018, 8(35),19861.
58 Song Y L, Yang L M, Wang Y L, et al. Japanese Journal of Applied Physics,2014, 53(5), 51101.
59 Cheng C H, Chin A,Yeh F S. IEEE Electron Device Letters,2010, 31(9),1020.
60 Zahari F, Hansen M, Mussenbrock T, et al. Aims Materials Science,2015, 2(3),203.
61 Zhang B, Gao Q, Wang B, et al. Materials Research Express,2019, 6(8), 86306.
62 Banerjee W, Lu N, Yang Y, et al. IEEE Transactions on Electron Devices,2018, 65(3),957.
20070058-963 Huang X,Chang K C,Chang T C, et al. IEEE Electron Device Letters,2014, 35(12),1227.
64 Zhang R, Huang H, Xia Q, et al. Advanced Electronic Materials,2019, 5(5), 1800833.
65 Li K, Wen Z, Wu D, et al. Journal of Physics D-Applied Physics,2013, 46(3), 35308.
66 Spassov D, Paskaleva A, Krajewski T A, et al. Nanotechnology,2018, 29(50), 505206.
67 Zhang Y, Deng N, Wu H, et al. Applied Physics Letters,2014, 105(6), 63508.
68 Jiang L, Lv F C, Yang R, et al. Journal of Materiomics,2019, 5(2),296.
69 Dirkmann S, Hansen M, Ziegler M, et al. Scientific Reports,2016, 6,647.
70 Huh W,Jang S,Lee J Y, et al. Advanced Materials,2018, 30(35),1801447.
71 Bessonov A A, Kirikova M N, Petukhov D I, et al. Nature Materials,2015, 14(2),199.
72 Ilyas N, Li D, Li C, et al. Nanoscale Research Letters,2020,15(1),30.
73 Yu S, Wu Y, Jeyasingh R, et al. IEEE Transactions on Electron Devices,2011,58(8), 2729.
74 Sun Y, Zhao X, Song C, et al. Advanced Functional Materials,2019, 29(13), 1808376.
75 Xu D P, Cheng P H, Chen L, et al. Journal of Infrared and Millimeter Waves,2018, 37(6),693.
76 Lee W, Park J, Kim S, et al. ACS Nano,2012, 6(9),8166.
77 Zhang W,Kong J Z,Cao Z Y, et al. Nanoscale Research Letters,2017, 12,393.
78 Wang B, Luo H, Wang X, et al. ACS Nano,2020, 14(1),175.
79 Wang Y, Lv Z, Chen J, et al. Advanced Materials,2018, 30(38), 1802883.
80 Wu Z, Chen X, Zhang Y, et al. Advanced Materials Interfaces,2018, 5(4), 1701210.
81 Zhu S, Zhang X, Sun B, et al. Vacuum,2018, 151, 261.
82 Sun S, Hu Y, Xu Y, et al. Journal of Electronic Materials,2020, 49(2),980.
83 Gonzalez-Flores K E, Holley P, Cabanas S A, et al. Superlattices and Microstructures,2020, 137,980.
84 Zou H, Zhu X, Hu Y, et al. Journal of Materials Science-Materials in Electronics,2017, 28(4),3806.
85 Hu Y, You H,Zhu X, et al. Journal of Non-Crystalline Solids,2017, 457,141.
86 Zheng L, Song W, Song Z, et al. ACS Applied Materials & Interfaces,2019, 11(49),45885.
87 Zhao Z, Hue S, Wu W, et al. Semiconductor Science and Technology,2019, 34(10), 105022.
88 Zhang J, Hu Y, Zhang R, et al. ECS Journal of Solid State Science and Technology,2019, 8(10),P563.
89 Li F, Yang B, Zhang J, et al. Physical Chemistry Chemical Physics,2020, 22(2),716.
90 Zhou L, Yang Z, Wang X, et al. Advanced Electronic Materials,2020, 6(1), 1900781.
91 Guo X, Hu Y, Chou Q, et al. Journal of Materials Science-Materials in Electronics,2019, 30(21),19302.
92 Chen Q, Lin M, Wang Z, et al. Advanced Electronic Materials,2019, 5(9),1800852.
93 Wang Y, Lv Z, Liao Q, et al. Advanced Materials,2018, 30(28), 1800327.
94 Wang G L. Atomic layer deposition of several nano-composite oxide resistive devices and their storage characteristics and memristive function. Ph.D. Thesis, Nanjing University, China, 2017 (in Chinese).
王来国. 几种纳米复合氧化物阻变器件的原子层沉积制备及其存储特性和忆阻功能的研究. 博士学位论文, 南京大学, 2017.
95 Jiang H, Li C, Lin P, et al. Advanced Electronic Materials,2019, 5(9), 1800958.
96 Lai Y F,Chen F,Zeng Z C, et al. Chinese Physics B,2017, 26(8), 87305.
97 You H, Hu Y, Zhu X, et al. Applied Physics A-Materials Science & Processing,2018, 124(2),168.
98 Jiang H, Han L, Lin P, et al. Scientific Reports,2016, 6,28525.
99 Nili H, Walia S, Balendhran S, et al. Advanced Functional Materials,2014, 24(43),6741.
100 Kim K M, Song S J, Kim G H, et al. Advanced Functional Materials,2011, 21(9),1587.
101 Govoreanu B, Redolfi A, Zhang L, et al. In:2013 IEEE International Electron Devices Meeting. Washington, 2013, pp. 10.2.1.
102 Yan X, Qin C, Lu C, et al. ACS Applied Materials & Interfaces,2019, 11(51),48029.
103 Liu S, Lu N, Zhao X, et al. Advanced Materials,2016, 28(48),10623.
104 Baek K,Park S,Park J, et al. Nanoscale,2017, 9(2),582.
105 Zhou W. Transition metal oxide selector and memristor performance control. Master's Thesis, Huazhong University of Science and Technology, China, 2019 (in Chinese).
周稳. 过渡金属氧化物选择器与忆阻器性能调控.硕士学位论文,华中科技大学, 2019.
106 Lyu F C. Research on double-layer transition metal oxide heterojunction memristor and its resistance change mechanism. Master's Thesis, Huazhong University of Science and Technology, China, 2017 (in Chinese).
吕福成. 双层过渡金属氧化物异质结忆阻器及其阻变机理研究.硕士学位论文,华中科技大学, 2017.
107 Lin Y D, Chen P S, Lee H Y, et al. Nanoscale Research Letters,2017, 12,407.
108 Bessonov A A, Kirikova M N, Petukhov D I, et al. Nature Materials,2015, 14(2),199.
109 Zhu K, Liang X, Yuan B, et al. In: 2019 IEEE International Reliability Physics Symposium (IRPS). Monterey, 2019, pp. 1.
110 Prakash A,Park J,Song J, et al. IEEE Electron Device Letters,2014, 36(1),32.
111 Park S,Sheri A,Kim J, et al. In: 2013 IEEE International Electron Devices Meeting. Washington, 2013, pp. 2561.
112 Wu W,Wu H,Gao B, et al. IEEE Electron Device Letters,2017, 38(8),1019.
113 Kim S,Choi S,Lu W. ACS Nano,2014, 8(3),2369.
114 Woo J, Moon K, Song J, et al. IEEE Electron Device Letters,2016, 37(8),994.
115 Miao F, Strachan J P, Yang J J, et al. Advanced Materials,2011, 23(47),5633.
116 Miao F, Yi W, Goldfarb I, et al. ACS Nano,2012, 6(3),2312.
117 Tian H, Guo Q, Xie Y, et al. Advanced Materials,2016, 28(25),4991.
118 Yao P, Wu H, Gao B, et al. Nature,2020, 577(7792),641.
119 Mennel L, Symonowicz J, Wachter S, et al. Nature,2020, 579(7797),62.
120 Wang C Y,Liang S J,Wang S, et al. Science Advances,2020, 6(26),eaba6173.
[1] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed