Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1022-1049    https://doi.org/10.11896/cldb.19100063
  |
柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件
陆骐峰,孙富钦,王子豪,张珽
中国科学院苏州纳米技术与纳米仿生研究所,苏州 215123
Recent Advances in Flexible Artificial Synapses Towards Intelligent Human-Machine Interface and Neuromorphic Computation Systems
LU Qifeng,SUN Fuqin,WANG Zihao,ZHANG Ting
Institute of Nano-Tech and Nano-Bionics (SINANO),Chinese Academy of Sciences,Suzhou 215123,China
下载:  全 文 ( PDF ) ( 33655KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 人工智能技术的发展为人机交互、感知系统、机器人及假肢的控制等带来了革命性变化,同时对复杂数据的处理和人机交互界面提出了新的要求。不同于目前基于软件系统和冯·诺依曼构架实现的神经网络,人脑运算方式具有高效率和低功耗的特点。因此,在硬件层面上模拟人脑的神经拟态器件,对构建新的运算系统具有重要意义。此外,神经拟态器件能够将传感器数字信号转变成类神经模拟信号,有望实现与生物神经信号的兼容,构建智能、高效的人机交互界面。因此,神经形态器件受到了广泛研究,其相关材料、制备工艺和器件结构不断得到优化,例如基于晶体管和忆阻器的柔性仿生人工突触器件均实现了视觉信息处理、运动识别、类脑神经记忆等功能。
目前,虽然随着研究的不断深入,仿生人工突触器件的工作原理得到了一定解释,但深入的机理仍有待挖掘:(1)针对生物个体间的差异,以及同一个体不同感知系统的差异,需要对人工突触器件突触后信号进行调控,以获得与生物神经信号更好的兼容性;(2)生物突触的树突结构,能够搜集、整合和调制时间和空间的信号,模拟树突的信号整合机制,将有助于改善多栅极人工突触晶体管的设计方案,实现对人工突触器件信号整合功能的调控;(3)目前多数研究是基于硬质衬底上的器件设计,对于在柔性衬底上的形变-异质界面-器件电子学性能的规律还有待研究,需要对应力应变下柔性人工突触器件的稳定性与失效机制进行探究。
本文归纳了柔性仿生人工突触器件的最新研究进展,分别从器件结构、材料选择、工作机理等角度进行介绍,分析了人工突触器件面临的问题和潜在应用领域。本综述期望为柔性人工突触的设计、制备和应用提供一定参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陆骐峰
孙富钦
王子豪
张珽
关键词:  人工突触  柔性电子  晶体管  忆阻器  人机交互  神经网络计算    
Abstract: Benefiting from the fast progress of artificial intelligence, a number of evolutions in the areas of human-machine interface, bio-inspired sensing systems, robots and prosthetics have been achieved. However,because of data explosion and the requirement for intelligent human-machine interaction, novel technology should be developed to overcome current bottlenecks. Different from existing extensive-energy-consumption neural networks implemented at the software level based on the conventional von Neumann architecture, the human brain only has a power consumption of about 20 W. Therefore, it is of a great importance to design a new neuromorphic computing system that is executed by parallel operation with high speed and low power consumption resemble to the human brain. Artificial synapses, either based on transistor or memristor structure, can be used as basic building blocks to achieve large-scale neural network parallelism. In addition, the spike based information processing in biological systems can also be mimicked with the employment of thue artificial synapses, which is beneficial to the construction of intelligent human-machine interface. Therefore, much efforts have been made to optimize the performance of the synaptic devices in terms of materials, fabrication process and structures. Consequently, a series of biorealistic synaptic behaviors, such as visual information reprocessing, movement control and learning-forgetting process, have been emulated using flexible artificial synapses.
Despite the great achievement in the study of artificial synapses, several underlying mechanisms have not been uncovered. First, the modulation of the post-synaptic signals varies from each individual, which requires specific analysis in order to make it to be compatible with the neural signal. In addition, dendrites in biological systems can collect, integrate, and modulate thousands of pre-synaptic input signals, and transmit these signals to post-synaptic neurons. That is to say, spatiotemporal information can be modulated. Therefore, exploration of the underlying mechanism and optimization of the device structure mimicking the biological dendrite can contribute to the simulation of dynamic logic induced by spatiotemporal synaptic stimulation. Besides, most of the reported researches were performed on the rigid substrates, which are not compatible with the biological systems. Therefore, fabrication of the devices on flexible substrates and investigation of the relationship between the electrical properties and interface quality are critical.
Herein, an overview of the recent progress of the artificial synapses is presented in terms of device structure, material selection, and working mechanism. Future challenges, research directions, and possible applications are also discussed. This review is hoped to provide a guidance for the design and fabrication of the flexible artificial synapses towards neuromorphic computing and intelligent human-machine interface.
Key words:  artificial synapse    flexible electronics    transistor    memristor    human-machine interface    neuromorphic computation
                    发布日期:  2020-01-15
ZTFLH:  O47  
基金资助: 国家重点研发计划(2018YFB1304700);国家自然科学基金委面上项目(61574163;61801473);江苏省自然科学基金杰出青年科学基金项目(BK20170008;BK20160011)
通讯作者:  tzhang2009@sinano.ac.cn   
作者简介:  陆骐峰,2018年获得利物浦大学博士学位,专业为微电子学与固体电子学。目前为中科院苏州纳米所博士后,合作导师为张珽研究员。主要研究方向为微纳器件制造技术、柔性电子和人工突触器件。
孙富钦,2016年6月毕业于曲阜师范大学物理工程学院电子信息工程专业,现为中国科学技术大学纳米技术与纳米仿生学院博士研究生,目前的主要研究方向为柔性传感器和柔性神经形态电子器件。
王子豪,2018年6月毕业于东北大学,获得工学学士学位。现为中国科学技术大学硕士研究生,目前的主要研究方向为柔性传感器。
张珽,研究员,2007年获得加州大学河滨分校博士学位。目前为中科院苏州纳米所研究员,博士生导师。2017年江苏省杰出青年基金获得者。主要研究方向为纳米材料、微纳器件和柔性传感器制造。
引用本文:    
陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
LU Qifeng,SUN Fuqin,WANG Zihao,ZHANG Ting. Recent Advances in Flexible Artificial Synapses Towards Intelligent Human-Machine Interface and Neuromorphic Computation Systems. Materials Reports, 2020, 34(1): 1022-1049.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100063  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1022
1 Liao X, Xiao L, Yang C, et al. Frontiers of Computer Science, 2014, 8, 345.
2 Markram H. Nature Reviews Neuroscience, 2006, 7, 153.
3 Nawrocki R A, Voyles R M, Shaheen S E. IEEE Transactions on Electron Devices, 2016, 63, 3819.
4 Ho V M, Lee J A, Martin K C. Science, 2011, 334, 623.
5 Zucker R S, Regehr W G. Annual Review of Physiology, 2002, 64, 355.
6 Wang X, Li G, Liu R, et al. Journal of Materials Chemistry, 2012, 22, 21824.
7 Wang X, Xiong Z, Liu Z, et al. Advanced Materials, 2015, 27, 1370.
8 Wang X, Gu Y, Xiong Z, et al. Advanced Materials, 2014, 26, 1309.
9 Gu Y, Wang X, Gu W, et al. Nano Research, 2017, 10, 2683.
10 Yao H B, Ge J, Wang C F, et al. Advanced Materials, 2013, 25, 6692.
11 Kim Y, Chortos A, Xu W, et al. Science, 2018, 360, 998.
12 Zidan M A, Strachan J P, Lu W D. Nature Electronics, 2018, 1, 22.
13 Tian H, Zhao L, Wang X, et al. ACS Nano, 2017, 11, 12247.
14 Zhang C, Ye W B, Zhou K, et al. Advanced Functional Materials, 2019, 29, 1808783.
15 Hu L, Fu S, Chen Y, et al. Advanced Materials, 2017, 29, 1606927.
16 Yu H, Gong J, Wei H, et al. Materials Chemistry Frontiers, 2019, 3, 941.
17 Tuma T, Pantazi A, Le Gallo M, et al. Nature Nanotechnology, 2016, 11, 693.
18 Prezioso M, Merrikh-Bayat F, Hoskins B, et al. Nature, 2015, 521, 61.
19 Xu W, Lee Y, Min S Y, et al. Advanced Materials, 2016, 28, 527.
20 Jiang J, Hu W, Xie D, et al. Nanoscale, 2019, 11, 1360.
21 John R A, Ko J, Kulkarni M R, et al. Small, 2017, 13, 1701193.
22 Arnold A J, Razavieh A, Nasr J R, et al. ACS Nano, 2017, 11, 3110.
23 Wan C, Chen G, Fu Y, et al. Advanced Materials, 2018, 30, 1801291.
24 He Y, Yang Y, Nie S, et al. Journal of Materials Chemistry C, 2018, 6, 5336.
25 Tian H, Mi W, Wang X F, et al. Nano Letters, 2015, 15, 8013.
26 Gou G, Sun J, Qian C, et al. Journal of Materials Chemistry C, 2016, 4, 11110.
27 Sanchez Esqueda I, Yan X, Rutherglen C, et al. ACS Nano, 2018, 12, 7352.
28 Gao W T, Zhu L Q, Tao J, et al. ACS Applied Materials & Interfaces, 2018, 10, 40008.
29 Jo S H, Chang T, Ebong I, et al. Nano Letters, 2010, 10, 1297.
30 Yang J J, Strukov D B, Stewart D R. Nature Nanotechnology, 2013, 8, 13.
31 Chae B G, Seol J B, Song J H, et al. Advanced Materials, 2017, 29, 1701752.
32 Vishwanath S K, Kim J. Journal of Materials Chemistry C, 2016, 4, 10967.
33 Wang M, Bi C, Li L, et al. Nature Communications, 2014, 5, 4598.
34 Zhang Q, Shi Z, Yin K, et al. Nano Letters, 2018, 18, 5070.
35 Shmitz F, Kirsch M, Wagner H. European Journal of Cell Biology, 1989, 49, 207.
36 Kandel E R, Schwartz J H, Jessell T M, et al. Principles of neural science, McGraw-hill, New York, 2000.
37 Abbott L, Regehr W G. Nature, 2004, 431, 796.
38 Rotman Z, Deng P Y, Klyachko V A. Journal of Neuroscience, 2011, 31, 14800.
39 Reyes A D. Hearing Research, 2011, 279, 60.
40 Hebb D. The Organization of Behavior, John Wiley & Sons, New York, 1949.
41 Caporale N, Dan Y. Annual Review of Neuroscience, 2008, 31, 25.
42 Wang Z, Joshi S, Savel’ev S E, et al. Nature Materials, 2017, 16, 101.
43 Wang Z, Midya R, Joshi S, et al. In: the 2018 IEEE International Symposium on Circuits and Systems. Florence, 2018, pp.18228325.
44 Upadhyay N K, Jiang H, Wang Z, et al. Advanced Materials Technologies, 2019, 4, 1800589.
45 Chen L, He Z Y, Wang T Y, et al. Electronics, 2018, 7, 80.
46 van de Burgt Y, Lubberman E, Fuller E J, et al. Nature Materials, 2017, 16, 414.
47 Tian H, Mi W, Zhao H, et al. Nanoscale, 2017, 9, 9275.
48 Wu C, Kim T W, Choi H Y, et al. Nature Communications, 2017, 8, 752.
49 van De Burgt Y, Melianas A, Keene S T, et al. Nature Electronics, 2018, 1, 386.
50 Zhao Y, Jiang J. Journal of Nanoscience and Nanotechnology, 2018, 18, 8003.
51 Lee Y, Park J, Choe A, et al. Advanced Functional Materials, 2019, 1904523.
52 Wan C, Cai P, Wang M, et al. Advanced Materials, 2019, 1902434.
53 Zhou F, Zhou Z, Chen J, et al. Nature Nanotechnology, 2019, 14, 776.
54 Van Tho L, Baeg K J, Noh Y Y. Nano Convergence, 2016, 3, 10.
55 Ren Y, Yang J Q, Zhou L, et al. Advanced Functional Materials, 2018, 28, 1805599.
56 Zhang H, Zhang Y, Yu Y, et al. ACS Photonics, 2017, 4, 2220.
57 Diorio C, Hasler P, Minch A, et al. IEEE transactions on Electron Devices, 1996, 43, 1972.
58 Kim S, Choi B, Lim M, et al. ACS Nano, 2017, 11, 2814.
59 Ren Y, Yang J Q, Zhou L, et al. Advanced Functional Materials, 2018, 28, 1805599.
60 Sakai S, Ilangovan R, Takahashi M. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2004, 43, 7876.
61 Kato Y, Kaneko Y, Tanaka H, et al. Japanese Journal of Applied Phy-sics, 2014, 47, 2719.
62 Hatanaka T, Takahashi M, Sakai S, et al. IEICE Transactions on Electronics, 2011, 94, 539.
63 Miyasako T, Trinh B N Q, Onoue M, et al. Japanese Journal of Applied Physics, 2011, 50, 04DD09.
64 Kaneko Y, Yu N, Ueda M, et al. Applied Physics Letters, 2011, 99, 3311.
65 Hoffman J, Xiao P, Reiner J W, et al. Advanced Materials, 2010, 22, 2957.
66 Kim E J, Kim K A, Yoon S M. Journal of Physics D Applied Physics, 2016, 49, 075105.
67 Kim S T, Kim D J, Kim T J, et al. Nano Letters, 2010, 10, 2877.
68 Yoon S M, Tokumitsu E, Ishiwara H. IEEE Electron Device Letters, 1999, 20, 229.
69 Yoon, S M Y, Tokumitsu E, Ishiwara H. Japanese Journal of Applied Physics, 2000, 39, 2119.
70 Boscke T S, Muller J, Brauhaus D, et al. Applied Physics Letters, 2011, 99, 5397.
71 Müller J, Böscke T S, Bräuhaus D, et al. Applied Physics Letters, 2011, 99, 947.
72 Starschich S, Griesche D, Schneller T, et al. Applied Physics Letters, 2014, 104, 051604.
73 Mueller S, Mueller J, Singh A, et al. Advanced Functional Materials, 2012, 22, 2412.
74 Jerry M, Chen P Y, Zhang J, et al. In: the 2017 IEEE International Electron Devices Meeting (IEDM). San Francisco, 2017, pp.17524699.
75 Jang S, Jang S, Lee E H, et al. ACS Applied Materials & Interfaces, 2018, 11, 1071.
76 Yu S. Proceedings of the IEEE, 2018, 106, 260.
77 Kim S H, Hong K, Xie W, et al. Advanced Materials, 2013, 25, 1822.
78 Lee J, Kaake L G, Cho J H, et al. The Journal of Physical Chemistry C, 2009, 113, 8972.
79 Xu W, Min S Y, Hwang H, et al. Science Advances, 2016, 2, e1501326.
80 Sharbati M T, Du Y, Torres J, et al. Advanced Materials, 2018, 30, 1802353.
81 Yu J, Liang L, Hu L, et al. Nano Energy, 2019, 62, 772.
82 Lai Q, Zhang L, Li Z, et al. Advanced Materials, 2010, 22, 2448.
83 Shi J, Ha S D, Zhou Y, et al. Nature Communications, 2013, 4, 2676.
84 Yang C S, Shang D S, Liu N, et al. Advanced Materials, 2017, 29, 1700906.
85 Ha S D, Shi J, Meroz Y, et al. Physical Review Applied, 2014, 2, 064003.
86 Wan C J, Liu Y H, Zhu L Q, et al. ACS Applied Materials & Interfaces, 2016, 8, 9762.
87 Wan C, Zhou J, Shi Y, et al. IEEE Electron Device Letters, 2014, 35, 414.
88 Zhu L Q, Wan C J, Guo L Q, et al. Nature Communications, 2014, 5, 3158.
89 Liu Y H, Zhu L Q, Feng P, et al. Advanced Materials, 2015, 27, 5599.
90 Jin W C, Qiang Z L, Mei Z J, et al. Nanoscale, 2014, 6, 4491.
91 Li H K, Chen T P, Liu P, et al. Journal of Applied Physics, 2016, 119, 243.
92 Lee Y, Oh J Y, Xu W, et al. Science Advances, 2018, 4, eaat7387.
93 Wang Y, Lv Z, Chen J, et al. Advanced Materials, 2018, 30, 1802883.
94 Sun Y, Qian L, Xie D, et al. Advanced Functional Materials, 2019, 1902538.
95 Gao S, Liu G, Yang H, et al. ACS Nano, 2019, 13, 2634.
96 Yang Y, He Y, Nie S, et al. IEEE Electron Device Letters, 2018, 39, 897.
97 He Y, Nie S, Liu R, et al. IEEE Electron Device Letters, 2019, 40, 818.
98 John R A, Ko J, Kulkarni M R, et al. Small, 2017, 13,1701193.
99 Bichler O, Zhao W, Alibart F, et al. IEEE Transactions on Electron Devices, 2010, 57, 3115.
100 Alibart F, Pleutin S, Guérin D, et al. Advanced Functional Materials, 2010, 20, 330.
101 Qian C, Kong L, Yang J, et al. Applied Physics Letters, 2017, 110, 083302.
102 Qian C, Sun J, Kong L, et al. ACS Applied Materials & Interfaces, 2016, 8, 26169.
103 Gkoupidenis P, Koutsouras D A, Lonjaret T, et al. Scientific Reports, 2016, 6, 27007.
104 Kim C H, Sung S, Yoon M H. Scientific Reports, 2016, 6, 33355.
105 Gkoupidenis P, Schaefer N, Garlan B, et al. Advanced Materials, 2015, 27, 7176.
106 Shen A M, Chen C L, Kim K, et al. ACS Nano, 2013, 7, 6117.
107 Gacem K, Retrouvey J M, Chabi D, et al. Nanotechnology, 2013, 24, 384013.
108 Wan C J, Liu Y H, Feng P, et al. Advanced Materials, 2016, 28, 5878.
109 Sharbati M T, Du Y, Torres J, et al. Advanced Materials, 2018, 30, 1870273.
110 Tian H, Guo Q, Xie Y, et al. Advanced Materials, 2016, 28, 4991.
111 John R A, Liu F, Chien N A, et al. Advanced Materials, 2018, 30, 1800220.
112 Zhu J, Yang Y, Jia R, et al. Advanced Materials, 2018, 30, 1800195.
113 Bagdzevicius S, Maas K, Boudard M, et al. Journal of Electroceramics, 2017, 39, 157.
114 Yang J J, Miao F, Pickett M D, et al. Nanotechnology, 2009, 20, 215201.
115 Medeiros-Ribeiro G, Perner F, Carter R, et al. Nanotechnology, 2011, 22, 095702.
116 Hirose Y, Hirose H. Journal of Applied Physics, 1976, 47, 2767.
117 Yang Y, Gao P, Gaba S, et al. Nature Communications, 2012, 3, 732.
118 Yang Y, Peng G, Li L, et al. Nature Communications, 2014, 5, 4232.
119 Liu Q, Sun J, Lv H, et al. Advanced Materials, 2012, 24, 1844.
120 Sun Y, Tai M, Song C, et al. Journal of Physical Chemistry C, 2018, 122, 6431.
121 Tian X, Yang S, Zeng M, et al. Advanced Materials, 2014, 26, 3649.
122 Chae B, Seol J, Song J, et al. Advanced Materials, 2017, 29, 1701752.
123 Pan F, Gao S, Chen C, et al. Materials Science & Engineering R-reports, 2014, 83, 1.
124 Kwon D, Kim K, Jang J H, et al. Nature Nanotechnology, 2010, 5, 148.
125 Pickett M D, Julien B, Joshua J Y, et al. Advanced Materials, 2011, 23, 1730.
126 Lee M J, Han S, Jeon S H, et al. Nano Letters, 2009, 9, 1476.
127 Nili H, Walia S, Balendhran S, et al. Advanced Functional Materials, 2014, 24, 6741.
128 Domaradzki J. Surface & Coatings Technology, 2016, 290, 28.
129 Muenstermann R, Menke T, Dittmann R, et al. Advanced Materials, 2010, 22, 4819.
130 Gu C, Lee J. ACS Nano, 2016, 10, 5413.
131 Waser R, Dittmann R, Staikov G, et al. Advanced Materials, 2009, 21, 2632.
132 Hansen M, Ziegler M, Kolberg L, et al. Scientific Reports, 2015, 5, 13753.
133 Hu Z, Li Q, Li M, et al. Applied Physics Letters, 2013, 102, 102901.
134 Han J S, Van Le Q, Choi J, et al. ACS Applied Materials & Interfaces, 2019, 11, 8155.
135 Chanthbouala A, Garcia V, Cherifi R O, et al. Nature Materials, 2012, 11, 860.
136 Kim D, Lu H, Ryu S, et al. Nano Letters, 2012, 12, 5697.
137 Hamdioui S, Aziza H, Sirakoulis G C, In: 2014 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era. Santorini, 2014, pp.14447109.
138 Li D, Wu B, Zhu X, et al. ACS Nano, 2018, 12, 9240.
139 Strukov D B, Snider G S, Stewart D R, et al. Nature, 2008, 453, 80.
140 Padovani A, Woo J, Hwang H, et al. IEEE Electron Device Letters, 2018, 39, 672.
141 Zhu X, Du C, Jeong Y, et al. Nanoscale, 2017, 9, 45.
142 Tan Z, Yang R, Terabe K, et al. Advanced Materials, 2016, 28, 377.
143 Pillai P B, De Souza M M. ACS Applied Materials & Interfaces, 2017, 9, 1609.
144 Hubbard W A, Kerelsky A, Jasmin G, et al. Nano Letters, 2015, 15, 3983.
145 Cao X, Li X, Gao X, et al. Journal of Applied Physics, 2009, 106, 073723.
146 Tan Z H, Yang R, Terabe K, et al. Advanced Materials, 2016, 28, 377.
147 Babu S, Thanneeru R, Inerbaev T, et al. Nanotechnology, 2009, 20, 085713.
148 Guo Z, Zhu L, Zhou J, et al. Journal of Materials Chemistry C, 2015, 3, 4081.
149 Jiang H, Stewart D A. ACS Applied Materials & Interfaces, 2017, 9, 16296.
150 Long S, Liu Q, Lv H, et al. Applied Physics A, 2011, 102, 915.
151 Zhu X J, Shang J, Li R W. Frontiers of Materials Science, 2012, 6, 183.
152 Yuan Y, Huang J. Accounts of Chemical Research, 2016, 49, 286.
153 Choi J, Van Le Q, Hong K T, et al. ACS Applied Materials & Interfaces, 2017, 9, 30764.
154 Walsh A. The Journal of Physical Chemistry C, 2015, 119, 5755.
155 Noel N K, Stranks S D, Abate A, et al. Energy & Environmental Science, 2014, 7, 3061.
156 Shi J, Ha S D, Zhou Y, et al. Nature Communications, 2013, 4, 2676.
157 Du N, Kiani M, Mayr C G, et al. Frontiers in Neuroscience, 2015, 9, 227.
158 Nili H, Walia S, Kandjani A E, et al. Advanced Functional Materials, 2015, 25, 3172.
159 Xu W, Cho H, Kim Y H, et al. Advanced Materials, 2016, 28, 5916.
160 Hwang B, Lee J S. Nanoscale, 2018, 10, 8578.
161 Nili H, Ahmed T, Walia S, et al. Nanotechnology, 2016, 27, 505210.
162 Liu G, Wang C, Zhang W, et al. Advanced Electronic Materials, 2016, 2, 1500298.
163 Erokhin V, Schüz A, Fontana M P. International Journal of Unconventional Computing, 2010, 6,15.
164 Erokhin V, Berzina T, Smerieri A, et al. Nano Communication Networks, 2010, 1, 108.
165 Yang X, Wang C, Shang J, et al. RSC Advances, 2016, 6, 25179.
166 Bandyopadhyay A, Sahu S, Higuchi M. Journal of the American Chemical Society, 2011, 133, 1168.
167 McFarlane T M, Zdyrko B, Bandera Y, et al. Journal of Materials Chemistry C, 2018, 6, 2533.
168 Xie W, Willa K, Wu Y, et al. Advanced Materials, 2013, 25, 3478.
169 Zschieschang U, Ante F, Kälblein D, et al. Organic Electronics, 2011, 12, 1370.
170 Zschieschang U, Kang M J, Takimiya K, et al. Journal of Materials Chemistry, 2012, 22, 4273.
171 Kim C H. IEEE Electron Device Letters, 2018, 39, 1736.
172 Qin S, Dong R, Yan X, et al. Organic Electronics, 2015, 22, 147.
173 Ge J, Zhang S, Liu Z, et al. Nanoscale, 2019, 11, 6591.
174 Park Y, Lee J S. ACS Nano, 2017, 11, 8962.
175 Yan X, Li X, Zhou Z, et al. ACS Applied Materials & Interfaces 2019, 11, 18654.
176 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306, 666.
177 Wan C J, Zhu L Q, Liu Y H, et al. Advanced Materials, 2016, 28, 3557.
178 He Q, Wu S, Yin Z, et al. Chemical Science, 2012, 3, 1764.
179 Tian H, Yang Y, Xie D, et al. Scientific Reports, 2014, 4, 3598.
180 Wang Y, Shi Z, Huang Y, et al. The Journal of Physical Chemistry C, 2009, 113, 13103.
181 Cheng P, Sun K, Hu Y H. Nano Letters, 2015, 16, 572.
182 Ge R, Wu X, Kim M, et al. Nano Letters, 2017, 18, 434.
183 Wang W, Panin G N, Fu X, et al. Scientific Reports, 2016, 6, 31224.
184 Zhou J, Lin J, Huang X, et al. Nature, 2018, 556, 355.
185 Jeong H Y, Kim J Y, Kim J W, et al. Nano Letters, 2010, 10, 4381.
186 Zhuge F, Hu B, He C, et al. Carbon, 2011, 49, 3796.
187 Xu R, Jang H, Lee M H, et al. Nano Letters, 2019, 19, 2411.
188 Khan A K, Lee B H. AIP Advances, 2016, 6, 095022.
189 He H K, Yang R, Zhou W, et al. Small, 2018, 14, 1800079.
190 Di J, Zhang X, Yong Z, et al. Advanced Materials, 2016, 28, 10529.
191 Liang K D, Huang C H, Lai C C, et al. ACS Applied Materials & Interfaces, 2014, 6, 16537.
192 Nagashima K, Yanagida T, Kanai M, et al. Japanese Journal of Applied Physics, 2012, 51, 11PE09.
193 Sun Y, Yan X, Zheng X, et al. Nano Research, 2016, 9, 1116.
194 Nagashima K, Yanagida T, Oka K, et al. Nano letters, 2010, 10, 1359.
195 Bae S H, Lee S, Koo H, et al. Advanced Materials, 2013, 25, 5098.
196 Yao P, Wu H, Gao B, et al. Nature Communications, 2017, 8, 15199.
197 Cai F, Correll J M, Lee S H, et al. Nature Electronics, 2019, 2, 290.
198 Hu M, Graves C E, Li C, et al. Advanced Materials, 2018, 30, 1705914.
[1] 林进义,安翔,白鲁冰,徐曼,韦传新,解令海,林宗琼,黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[2] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[3] 骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
[4] 马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
[5] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[6] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[7] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[8] 谭欣, 翟亚红. 铁电负电容晶体管的研究进展[J]. 材料导报, 2019, 33(3): 433-437.
[9] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[10] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[11] 徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
[12] 宁洪龙, 杨财桂, 陈建秋, 陶瑞强, 周艺聪, 蔡炜, 朱镇南, 魏靖林, 姚日晖, 彭俊彪. 喷墨打印电极在薄膜晶体管中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 742-748.
[13] 张栋, 肖淼, 马迅, 程国胜, 张兆春. 一种在硅材料表面组装金纳米颗粒的新方法*[J]. 《材料导报》期刊社, 2017, 31(2): 25-28.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed