Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 742-748    https://doi.org/10.11896/j.issn.1005-023X.2018.05.009
  材料综述 |
喷墨打印电极在薄膜晶体管中的应用
宁洪龙, 杨财桂, 陈建秋, 陶瑞强, 周艺聪, 蔡炜, 朱镇南, 魏靖林, 姚日晖, 彭俊彪
华南理工大学发光材料与器件国家重点实验室, 高分子光电材料与器件研究所,广州 510641
Application of Electrode Inkjet Printing in Thin Film Transistors
NING Honglong, YANG Caigui, CHEN Jianqiu, TAO Ruiqiang, ZHOU Yicong, CAI Wei,
ZHU Zhennan, WEI Jinglin, YAO Rihui, PENG Junbiao
Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510641
下载:  全 文 ( PDF ) ( 2041KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 喷墨打印技术具有成本低、环境友好、效率高和直接写入等优势,被广泛应用于薄膜晶体管(TFTs)中图形化电极的制备。高密度、大尺寸、柔性和低能耗电子器件的快速发展,对打印电极质量提出了更高的要求。文章对导电墨水、喷墨打印技术及喷墨打印电极工艺优化进行了总结,并指出了现阶段喷墨打印电极在薄膜晶体管应用中存在的问题及今后的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宁洪龙
杨财桂
陈建秋
陶瑞强
周艺聪
蔡炜
朱镇南
魏靖林
姚日晖
彭俊彪
关键词:  喷墨打印  导电墨水  电极  薄膜晶体管    
Abstract: Inkjet printing technology has been widely used in patterned electrodes of thin film transistors (TFTs) owing to its low cost, eco-friendliness, high efficiency and direct writing. With the rapid development of high-density, large-size, flexible and low-power consumption electronic devices, higher requirements are put forward for the quality of printed electrodes. In this article, the conductive ink, inkjet printing technology and the process optimization of printed electrodes are summarized, and the existing problems in the application of printing electrodes for TFTs and the future research direction are pointed out.
Key words:  inkjet printing    conductive ink    electrode    thin film transistor
               出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TN41  
基金资助: 国家重点研发计划资助(2017YFB0404703)
通讯作者:  姚日晖:通信作者,男,1981年生,博士,副教授,研究方向为光电材料与器件 E-mail:yaorihui@scut.edu.cn   
作者简介:  宁洪龙:男,1971年生,博士,教授,博士研究生导师,研究方向为新型信息显示材料与器件系统集成 E-mail:ninghl@scut.edu.cn
引用本文:    
宁洪龙, 杨财桂, 陈建秋, 陶瑞强, 周艺聪, 蔡炜, 朱镇南, 魏靖林, 姚日晖, 彭俊彪. 喷墨打印电极在薄膜晶体管中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 742-748.
NING Honglong, YANG Caigui, CHEN Jianqiu, TAO Ruiqiang, ZHOU Yicong, CAI Wei, ZHU Zhennan, WEI Jinglin, YAO Rihui, PENG Junbiao. Application of Electrode Inkjet Printing in Thin Film Transistors. Materials Reports, 2018, 32(5): 742-748.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.009  或          http://www.mater-rep.com/CN/Y2018/V32/I5/742
1 Wang Dongping, Xie Yingtao, OuYang Shihong, et al. Research status and trends of insulating layer in thin-film transistor[J].Chinese Journal of Liquid Crystals and Displays,2016,31(4):380(in Chinese).
王东平,谢应涛,欧阳世宏,等.薄膜晶体管中绝缘层的研究现状与趋势[J].液晶与显示,2016,31(4):380.
2 Lang Linfeng, Zhang Peng, Peng Junbiao. Research progress on oxide-based thin film transisitors[J].Acta Physica Sinica,2016,65(12):128504(in Chinese).
兰林锋,张鹏,彭俊彪.氧化物薄膜晶体管研究进展[J].物理学报,2016,65(12):128504.
3 Liu Xiang, Deng Zhenbo, Wang Zhangtao, et al. The recent research of progress of organic thin film transistor[J].Advanced Display,2008(12):54(in Chinese).
刘翔,邓振波,王章涛,等.有机薄膜晶体管(OTFT)的研究进展[J].现代显示,2008(12):54.
4 Xing Rubo, Ding Yan, Han Yanchun. Patterning of polymer by inkjet printing and its application in the fabrication of organic electronic devices[J].Journal of Molegular Science,2007,23(2):75(in Chinese).
邢汝博,丁艳,韩艳春.喷墨打印图案化高分子薄膜及其在有机电子器件加工中的应用[J].分子科学学报,2007,23(2):75.
5 Kuang Minxuan, Wang Jingxia, Wang Libin, et al. Research progress of high-precision patterns by directly inkjet printing[J].Acta Chimica Sinica,2012,70(18):1889(in Chinese).
邝旻翾,王京霞,王利彬,等.喷墨打印高精度图案研究进展[J].化学学报,2012,70(18):1889.
6 Ueoka Y, Nishibayashi T, Ishikawa Y, et al. Analysis of printed silver electrode on amorphous indium gallium zinc oxide[J].Japanese Journal of Applied Physics,2014,53(4S):04EB03.
7 Hu S B, Ning H L, Zhu F, et al. Low contact resistancea-IGZO TFT based on copper-molybdenum source/drain electrode[C]∥International Meeting on Information Display.2015.
8 Yao R H, Zheng Z K, Zeng Y, et al. All-aluminum thin film transistor fabrication at room temperature[J].Materials,2017,10:222.
9 Yim J R, Jung S Y, Yeon H W, et al. Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor[J].Japanese Journal of Applied Physics,2011,51(1R):011401.
10 Hong J Y, Yoon D G, Chin B D, et al. All-solution-processed, fle-xible thin-film transistor based on PANI/PETA as gate/gate insulator[J].RSC Advances,2015,5(128):105785.
11 Du B, Jiang Q, Zhao X F, et al. Preparation of PPy/CNT composite applications for supercapacitor electrode material[C]∥Materials Science Forum.Trans Tech Publications,2009:502.
12 Stempien Z, Rybicki E, Rybicki T, et al. Reactive inkjet printing of PEDOT electroconductive layers on textile surfaces[J].Synthetic Metals,2016,217:276.
13 Kim Y H, Sachse C, Machala M L, et al. Highly conductive PEDOT∶PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells[J].Advanced Functional Materials,2011,21(6):1076.
14 Xu W, Hu Z H, Liu H M, et al. Flexible all-organic, all-solution processed thin film transistor array with ultrashort channel[J].Scientific Reports,2016,6:29055.
15 Abdalla S, Al-Marzouki F, Al-Ghamdi A A, et al. Different technical applications of carbon nanotubes[J].Nanoscale Research Letters,2015,10(1):358.
16 Wu H Q, Linghu C Y, Lü H M, et al. Graphene applications in electronic and optoelectronic devices and circuits[J].Chinese Physics B,2013,22(9):098106.
17 Wang Bingwei, Sun Dongming. Carbon nanotubes and graphene for flexible electronics[J].Printed Circuit Information,2013(12):41(in Chinese).
汪炳伟,孙东明.碳纳米管和石墨烯在柔性电子器件中的应用[J].印制电路信息,2013(12):41.
18 Secor E B, Smith J, Marks T J, et al. High-performance inkjet-printed indium-gallium-zinc-oxide transistors enabled by embedded, chemically stable graphene electrodes[J].ACS Applied Materials & Interfaces,2016,8(27):17428.
19 Okimoto H, Takenobu T, Yanagi K, et al. Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing[J].Advanced Materials,2010,22(36):3981.
20 Wu Y L, Li Y N, Ong B S. A simple and efficient approach to a printable silver conductor for printed electronics[J].Journal of the American Chemical Society,2007,129(7):1862.
21 Ning H L, Chen J Q, Fang Z Q, et al. Direct inkjet printing of silver source/drain electrodes on an amorphous InGaZnO layer for thin-film transistors[J].Materials,2017,10(1):51.
22 Kwon Y T, Lee Y I, Kim S, et al. Full densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering[J].Applied Surface Science,2017,396:1239.
23 Wu Y L, Li Y N, Liu P, et al. Studies of gold nanoparticles as precursors to printed conductive features for thin-film transistors[J].Chemistry of Materials,2006,18(19):4627.
24 Wu J T, Hsu S L C, Tsai M H, et al. Direct inkjet printing of silver nitrate/poly (N-vinyl-2-pyrrolidone) inks to fabricate silver conductive lines[J].The Journal of Physical Chemistry C,2010,114(10):4659.
25 Chou K S, Ren C Y. Synthesis of nanosized silver particles by chemical reduction method [J].Materials Chemistry Physics,2000,64(3):241.
26 Li Y N, Wu Y L, Ong B S. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics[J].Journal of the American Chemical Society,2005,127(10):3266.
27 Hong S J, Kim Y H, Han J I. Development of ultrafine indium tin oxide (ITO) nanoparticle for ink-jet printing by low-temperature synthetic method[J].IEEE Transactions on Nanotechnology,2008,7(2):172.
28 Zeng Y, Ning H L, Zheng Z K, et al. A room temperature strategy towards enhanced performance and bias stability of oxide thin film transistor with a sandwich structure channel layer[J].Applied Phy-sics Letters,2017,110(15):153503.
29 Veluchamy P, Tsuji M, Nishio T, et al. A pyrosol process to depo-sit large-area SnO2: F thin films and its use as a transparent conducting substrate for CdTe solar cells[J].Solar Energy Materials and Solar Cells,2001,67(1):179.
30 Li Y Z, Lan L F, Sun S, et al. All inkjet-printed metal-oxide thin-film transistor array with good stability and uniformity using surface-energy patterns[J].ACS Applied Materials & Interfaces,2017,9(9):8194.
31 Fu Bing. Progress and trends in ink-jet printing technology[J].Information Recording Materials,2002,3(3):36(in Chinese).
付冰.喷墨打印技术的进展和发展趋势(一)[J].信息记录材料,2002,3(3):36.
32 Xu Lining, Cui Dafu, Fan Zhaoyan. Development of driving power for piezoelectric ceramics and it’s application on printer[J].Piezoelectrics & Acoustooptics,2006,28(1):30(in Chinese).
许立宁,崔大付,范兆岩.压电陶瓷驱动电源研制及其在打印机中的应用[J].压电与声光,2006,28(1):30.
33 Ning Honglong, Zhu zhennan, Tao ruiqiang, et al. Regulation rules of piezoelectric waveform on ink-jet printing electrode[J].Chinese Journal of Luminescence,2017,38(5):617(in Chinese).
宁洪龙,朱镇南,陶瑞强,等.压电波形对喷墨打印电极的调控规律[J].发光学报,2017,38(5):617.
34 Yang Liyuan, Liu Yongqiang, Wei Yu, et al. Research progress of aerosol jet printing technology[J].China Printing and Packaging Study,2012,4(2):9(in Chinese).
杨丽媛,刘永强,魏雨,等.气溶胶喷印技术研究进展[J].中国印刷与包装研究,2012,4(2):9.
35 Yang Liyuan. Research on aerosol jet printing technology and its application in organic thin-film transistor[D].Shijiazhuang:Hebei Normal University,2012(in Chinese).
杨丽媛.气溶胶喷印技术的研究及其在有机薄膜晶体管中的应用[D].石家庄:河北师范大学,2012.
36 Wang Shasha. The research of ink-jet printing based on electro-hydrodynamic(EHD)[D].Wuxi:Jiangnan University,2015(in Chinese).
王莎莎.基于电-液耦合动力学原理(EHD)的喷墨印刷研究[D].无锡:江南大学,2015.
37 Taylor G. Disintegration of water drops in an electric field[C]∥Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences.The Royal Society,1964:383.
38 Murata K. Super-fine ink-jet printing for nanotechnology[C]∥Proceedings. International Conference on.IEEE,2003:346
39 Lim Y Y, Aoyagi M, Goh Y M, et al. High frequency performance characterization of super-fine inkjet printed silver traces[C]∥CPMT Symposium Japan (ICSJ),2016 IEEE.IEEE,2016:239.
40 Khorramdel B, Laurila M M, M?ntysalo M. Metallization of high density TSVs using super inkjet technology[C]∥Electronic Components and Technology Conference (ECTC),2015 IEEE 65th.IEEE,2015:41.
41 Xu Hua, Lan Linfeng, Li Ming, et al. Effect of source/drain preparation on the performance of oxide thin-film transistors[J].Acta Physica Sinica,2014,63(3):38501(in Chinese).
徐华,兰林锋,李民,等.源漏电极的制备对氧化物薄膜晶体管性能的影响[J].物理学报,2014,63(3):38501.
42 Ning H L, Tao R Q, Fang Z Q, et al. Direct patterning of silver electrodes with 2.4 μm channel length by piezoelectric inkjet printing[J].Journal of Colloid and Interface Science,2017,487:68.
43 Yunker P J, Still T, Lohr M A, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J].Nature,2011,476(7360):308.
44 Li Y Z, Lan L F, Xiao P, et al. Coffee-ring defined short channels for inkjet-printed metal oxide thin-film transistors[J].ACS Applied Materials & Interfaces,2016,8(30):19643.
45 Tao R Q, Ning H L, Fang Z Q, et al. Homogeneous surface profiles of inkjet printed silver nanoparticle films by regulating their drying micro-environment[J].The Journal of Physical Chemistry C,2017,121(6):8992.
46 宁洪龙,周艺聪,等.一种印刷电极的紫外光固化后处理方法:中国,201611008357X[P].2016-11-16.
47 Kanai K, Miyazaki T, Suzuki H, et al. Effect of annealing on the electronic structure of poly (3-hexylthiophene) thin film[J].Physical Chemistry Chemical Physics,2010,12(1):273.
47 Kim M, Lee C, Jang J. Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity[J].Advanced Functional Materials,2014,24(17):2489.
48 Yang C, Shen J, Wang C, et al. All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes[J].Journal of Materials Chemistry A,2014,2(5):1458.
49 Ning P, Duan X, Ju X, et al. Facile synthesis of carbon nanofibers/MnO2 nanosheets as high-performance electrodes for asymmetric supercapacitors[J].Electrochimica Acta,2016,210:754.
50 Lee D G, Kim J H, Kim B H. Hierarchical porous MnO2/carbon nanofiber composites with hollow cores for high-performance supercapacitor electrodes: Effect of poly(methyl methacrylate) concentration[J].Electrochimica Acta,2016,200:174.
51 Kim B H, Yang K S, Yang D J. Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-layer capacitors[J].Electrochimica Acta,2013,109(11):859.
[1] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[2] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[3] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[4] 劳一桂, 高运明, 王强, 李光强. 冶金离子熔体电导率测定技术进展[J]. 材料导报, 2019, 33(11): 1882-1888.
[5] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[6] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[7] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[8] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[9] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[10] 刘云子,张伟,宋占永. 金属纳米颗粒导电墨水制备与后处理工艺的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 391-397.
[11] 张苗苗,刘旭燕,钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 378-383.
[12] 黄嘉平, 崔海坡, 宋成利, 周宇. 不同材料对双极高频电刀温度场的影响[J]. 材料导报, 2018, 32(24): 4319-4323.
[13] 李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
[14] 何云龙, 沈沪江, 王炜, 袁慧慧. 柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池关键电极材料研究进展[J]. 材料导报, 2018, 32(21): 3677-3688.
[15] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed