Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 742-748    https://doi.org/10.11896/j.issn.1005-023X.2018.05.009
  材料综述 |
喷墨打印电极在薄膜晶体管中的应用
宁洪龙, 杨财桂, 陈建秋, 陶瑞强, 周艺聪, 蔡炜, 朱镇南, 魏靖林, 姚日晖, 彭俊彪
华南理工大学发光材料与器件国家重点实验室, 高分子光电材料与器件研究所,广州 510641
Application of Electrode Inkjet Printing in Thin Film Transistors
NING Honglong, YANG Caigui, CHEN Jianqiu, TAO Ruiqiang, ZHOU Yicong, CAI Wei,
ZHU Zhennan, WEI Jinglin, YAO Rihui, PENG Junbiao
Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510641
下载:  全 文 ( PDF ) ( 2041KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 喷墨打印技术具有成本低、环境友好、效率高和直接写入等优势,被广泛应用于薄膜晶体管(TFTs)中图形化电极的制备。高密度、大尺寸、柔性和低能耗电子器件的快速发展,对打印电极质量提出了更高的要求。文章对导电墨水、喷墨打印技术及喷墨打印电极工艺优化进行了总结,并指出了现阶段喷墨打印电极在薄膜晶体管应用中存在的问题及今后的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宁洪龙
杨财桂
陈建秋
陶瑞强
周艺聪
蔡炜
朱镇南
魏靖林
姚日晖
彭俊彪
关键词:  喷墨打印  导电墨水  电极  薄膜晶体管    
Abstract: Inkjet printing technology has been widely used in patterned electrodes of thin film transistors (TFTs) owing to its low cost, eco-friendliness, high efficiency and direct writing. With the rapid development of high-density, large-size, flexible and low-power consumption electronic devices, higher requirements are put forward for the quality of printed electrodes. In this article, the conductive ink, inkjet printing technology and the process optimization of printed electrodes are summarized, and the existing problems in the application of printing electrodes for TFTs and the future research direction are pointed out.
Key words:  inkjet printing    conductive ink    electrode    thin film transistor
出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TN41  
基金资助: 国家重点研发计划资助(2017YFB0404703)
通讯作者:  姚日晖:通信作者,男,1981年生,博士,副教授,研究方向为光电材料与器件 E-mail:yaorihui@scut.edu.cn   
作者简介:  宁洪龙:男,1971年生,博士,教授,博士研究生导师,研究方向为新型信息显示材料与器件系统集成 E-mail:ninghl@scut.edu.cn
引用本文:    
宁洪龙, 杨财桂, 陈建秋, 陶瑞强, 周艺聪, 蔡炜, 朱镇南, 魏靖林, 姚日晖, 彭俊彪. 喷墨打印电极在薄膜晶体管中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 742-748.
NING Honglong, YANG Caigui, CHEN Jianqiu, TAO Ruiqiang, ZHOU Yicong, CAI Wei, ZHU Zhennan, WEI Jinglin, YAO Rihui, PENG Junbiao. Application of Electrode Inkjet Printing in Thin Film Transistors. Materials Reports, 2018, 32(5): 742-748.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.009  或          https://www.mater-rep.com/CN/Y2018/V32/I5/742
1 Wang Dongping, Xie Yingtao, OuYang Shihong, et al. Research status and trends of insulating layer in thin-film transistor[J].Chinese Journal of Liquid Crystals and Displays,2016,31(4):380(in Chinese).
王东平,谢应涛,欧阳世宏,等.薄膜晶体管中绝缘层的研究现状与趋势[J].液晶与显示,2016,31(4):380.
2 Lang Linfeng, Zhang Peng, Peng Junbiao. Research progress on oxide-based thin film transisitors[J].Acta Physica Sinica,2016,65(12):128504(in Chinese).
兰林锋,张鹏,彭俊彪.氧化物薄膜晶体管研究进展[J].物理学报,2016,65(12):128504.
3 Liu Xiang, Deng Zhenbo, Wang Zhangtao, et al. The recent research of progress of organic thin film transistor[J].Advanced Display,2008(12):54(in Chinese).
刘翔,邓振波,王章涛,等.有机薄膜晶体管(OTFT)的研究进展[J].现代显示,2008(12):54.
4 Xing Rubo, Ding Yan, Han Yanchun. Patterning of polymer by inkjet printing and its application in the fabrication of organic electronic devices[J].Journal of Molegular Science,2007,23(2):75(in Chinese).
邢汝博,丁艳,韩艳春.喷墨打印图案化高分子薄膜及其在有机电子器件加工中的应用[J].分子科学学报,2007,23(2):75.
5 Kuang Minxuan, Wang Jingxia, Wang Libin, et al. Research progress of high-precision patterns by directly inkjet printing[J].Acta Chimica Sinica,2012,70(18):1889(in Chinese).
邝旻翾,王京霞,王利彬,等.喷墨打印高精度图案研究进展[J].化学学报,2012,70(18):1889.
6 Ueoka Y, Nishibayashi T, Ishikawa Y, et al. Analysis of printed silver electrode on amorphous indium gallium zinc oxide[J].Japanese Journal of Applied Physics,2014,53(4S):04EB03.
7 Hu S B, Ning H L, Zhu F, et al. Low contact resistancea-IGZO TFT based on copper-molybdenum source/drain electrode[C]∥International Meeting on Information Display.2015.
8 Yao R H, Zheng Z K, Zeng Y, et al. All-aluminum thin film transistor fabrication at room temperature[J].Materials,2017,10:222.
9 Yim J R, Jung S Y, Yeon H W, et al. Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor[J].Japanese Journal of Applied Physics,2011,51(1R):011401.
10 Hong J Y, Yoon D G, Chin B D, et al. All-solution-processed, fle-xible thin-film transistor based on PANI/PETA as gate/gate insulator[J].RSC Advances,2015,5(128):105785.
11 Du B, Jiang Q, Zhao X F, et al. Preparation of PPy/CNT composite applications for supercapacitor electrode material[C]∥Materials Science Forum.Trans Tech Publications,2009:502.
12 Stempien Z, Rybicki E, Rybicki T, et al. Reactive inkjet printing of PEDOT electroconductive layers on textile surfaces[J].Synthetic Metals,2016,217:276.
13 Kim Y H, Sachse C, Machala M L, et al. Highly conductive PEDOT∶PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells[J].Advanced Functional Materials,2011,21(6):1076.
14 Xu W, Hu Z H, Liu H M, et al. Flexible all-organic, all-solution processed thin film transistor array with ultrashort channel[J].Scientific Reports,2016,6:29055.
15 Abdalla S, Al-Marzouki F, Al-Ghamdi A A, et al. Different technical applications of carbon nanotubes[J].Nanoscale Research Letters,2015,10(1):358.
16 Wu H Q, Linghu C Y, Lü H M, et al. Graphene applications in electronic and optoelectronic devices and circuits[J].Chinese Physics B,2013,22(9):098106.
17 Wang Bingwei, Sun Dongming. Carbon nanotubes and graphene for flexible electronics[J].Printed Circuit Information,2013(12):41(in Chinese).
汪炳伟,孙东明.碳纳米管和石墨烯在柔性电子器件中的应用[J].印制电路信息,2013(12):41.
18 Secor E B, Smith J, Marks T J, et al. High-performance inkjet-printed indium-gallium-zinc-oxide transistors enabled by embedded, chemically stable graphene electrodes[J].ACS Applied Materials & Interfaces,2016,8(27):17428.
19 Okimoto H, Takenobu T, Yanagi K, et al. Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing[J].Advanced Materials,2010,22(36):3981.
20 Wu Y L, Li Y N, Ong B S. A simple and efficient approach to a printable silver conductor for printed electronics[J].Journal of the American Chemical Society,2007,129(7):1862.
21 Ning H L, Chen J Q, Fang Z Q, et al. Direct inkjet printing of silver source/drain electrodes on an amorphous InGaZnO layer for thin-film transistors[J].Materials,2017,10(1):51.
22 Kwon Y T, Lee Y I, Kim S, et al. Full densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering[J].Applied Surface Science,2017,396:1239.
23 Wu Y L, Li Y N, Liu P, et al. Studies of gold nanoparticles as precursors to printed conductive features for thin-film transistors[J].Chemistry of Materials,2006,18(19):4627.
24 Wu J T, Hsu S L C, Tsai M H, et al. Direct inkjet printing of silver nitrate/poly (N-vinyl-2-pyrrolidone) inks to fabricate silver conductive lines[J].The Journal of Physical Chemistry C,2010,114(10):4659.
25 Chou K S, Ren C Y. Synthesis of nanosized silver particles by chemical reduction method [J].Materials Chemistry Physics,2000,64(3):241.
26 Li Y N, Wu Y L, Ong B S. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics[J].Journal of the American Chemical Society,2005,127(10):3266.
27 Hong S J, Kim Y H, Han J I. Development of ultrafine indium tin oxide (ITO) nanoparticle for ink-jet printing by low-temperature synthetic method[J].IEEE Transactions on Nanotechnology,2008,7(2):172.
28 Zeng Y, Ning H L, Zheng Z K, et al. A room temperature strategy towards enhanced performance and bias stability of oxide thin film transistor with a sandwich structure channel layer[J].Applied Phy-sics Letters,2017,110(15):153503.
29 Veluchamy P, Tsuji M, Nishio T, et al. A pyrosol process to depo-sit large-area SnO2: F thin films and its use as a transparent conducting substrate for CdTe solar cells[J].Solar Energy Materials and Solar Cells,2001,67(1):179.
30 Li Y Z, Lan L F, Sun S, et al. All inkjet-printed metal-oxide thin-film transistor array with good stability and uniformity using surface-energy patterns[J].ACS Applied Materials & Interfaces,2017,9(9):8194.
31 Fu Bing. Progress and trends in ink-jet printing technology[J].Information Recording Materials,2002,3(3):36(in Chinese).
付冰.喷墨打印技术的进展和发展趋势(一)[J].信息记录材料,2002,3(3):36.
32 Xu Lining, Cui Dafu, Fan Zhaoyan. Development of driving power for piezoelectric ceramics and it’s application on printer[J].Piezoelectrics & Acoustooptics,2006,28(1):30(in Chinese).
许立宁,崔大付,范兆岩.压电陶瓷驱动电源研制及其在打印机中的应用[J].压电与声光,2006,28(1):30.
33 Ning Honglong, Zhu zhennan, Tao ruiqiang, et al. Regulation rules of piezoelectric waveform on ink-jet printing electrode[J].Chinese Journal of Luminescence,2017,38(5):617(in Chinese).
宁洪龙,朱镇南,陶瑞强,等.压电波形对喷墨打印电极的调控规律[J].发光学报,2017,38(5):617.
34 Yang Liyuan, Liu Yongqiang, Wei Yu, et al. Research progress of aerosol jet printing technology[J].China Printing and Packaging Study,2012,4(2):9(in Chinese).
杨丽媛,刘永强,魏雨,等.气溶胶喷印技术研究进展[J].中国印刷与包装研究,2012,4(2):9.
35 Yang Liyuan. Research on aerosol jet printing technology and its application in organic thin-film transistor[D].Shijiazhuang:Hebei Normal University,2012(in Chinese).
杨丽媛.气溶胶喷印技术的研究及其在有机薄膜晶体管中的应用[D].石家庄:河北师范大学,2012.
36 Wang Shasha. The research of ink-jet printing based on electro-hydrodynamic(EHD)[D].Wuxi:Jiangnan University,2015(in Chinese).
王莎莎.基于电-液耦合动力学原理(EHD)的喷墨印刷研究[D].无锡:江南大学,2015.
37 Taylor G. Disintegration of water drops in an electric field[C]∥Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences.The Royal Society,1964:383.
38 Murata K. Super-fine ink-jet printing for nanotechnology[C]∥Proceedings. International Conference on.IEEE,2003:346
39 Lim Y Y, Aoyagi M, Goh Y M, et al. High frequency performance characterization of super-fine inkjet printed silver traces[C]∥CPMT Symposium Japan (ICSJ),2016 IEEE.IEEE,2016:239.
40 Khorramdel B, Laurila M M, M?ntysalo M. Metallization of high density TSVs using super inkjet technology[C]∥Electronic Components and Technology Conference (ECTC),2015 IEEE 65th.IEEE,2015:41.
41 Xu Hua, Lan Linfeng, Li Ming, et al. Effect of source/drain preparation on the performance of oxide thin-film transistors[J].Acta Physica Sinica,2014,63(3):38501(in Chinese).
徐华,兰林锋,李民,等.源漏电极的制备对氧化物薄膜晶体管性能的影响[J].物理学报,2014,63(3):38501.
42 Ning H L, Tao R Q, Fang Z Q, et al. Direct patterning of silver electrodes with 2.4 μm channel length by piezoelectric inkjet printing[J].Journal of Colloid and Interface Science,2017,487:68.
43 Yunker P J, Still T, Lohr M A, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J].Nature,2011,476(7360):308.
44 Li Y Z, Lan L F, Xiao P, et al. Coffee-ring defined short channels for inkjet-printed metal oxide thin-film transistors[J].ACS Applied Materials & Interfaces,2016,8(30):19643.
45 Tao R Q, Ning H L, Fang Z Q, et al. Homogeneous surface profiles of inkjet printed silver nanoparticle films by regulating their drying micro-environment[J].The Journal of Physical Chemistry C,2017,121(6):8992.
46 宁洪龙,周艺聪,等.一种印刷电极的紫外光固化后处理方法:中国,201611008357X[P].2016-11-16.
47 Kanai K, Miyazaki T, Suzuki H, et al. Effect of annealing on the electronic structure of poly (3-hexylthiophene) thin film[J].Physical Chemistry Chemical Physics,2010,12(1):273.
47 Kim M, Lee C, Jang J. Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity[J].Advanced Functional Materials,2014,24(17):2489.
48 Yang C, Shen J, Wang C, et al. All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes[J].Journal of Materials Chemistry A,2014,2(5):1458.
49 Ning P, Duan X, Ju X, et al. Facile synthesis of carbon nanofibers/MnO2 nanosheets as high-performance electrodes for asymmetric supercapacitors[J].Electrochimica Acta,2016,210:754.
50 Lee D G, Kim J H, Kim B H. Hierarchical porous MnO2/carbon nanofiber composites with hollow cores for high-performance supercapacitor electrodes: Effect of poly(methyl methacrylate) concentration[J].Electrochimica Acta,2016,200:174.
51 Kim B H, Yang K S, Yang D J. Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-layer capacitors[J].Electrochimica Acta,2013,109(11):859.
[1] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[2] 长俊钢, 陈玉, 何静, 梁奇银, 雷晓波, 蔡芳共, 张勤勇. 热电器件界面性能的研究现状[J]. 材料导报, 2024, 38(6): 22080238-13.
[3] 谭海星, 林剑荣, 黄培源, 彭憬怡, 刘思, 陈建文, 徐华, 肖鹏. 柔性氧化物薄膜晶体管栅绝缘层的研究进展[J]. 材料导报, 2024, 38(23): 23050204-9.
[4] 王彦, 杨凯, 吕绪明, 党博, 魏东博, 张平则. 石墨表面双辉等离子Ta/TaC涂层抗热震性能研究[J]. 材料导报, 2024, 38(23): 23080013-9.
[5] 吴菁, 李佳, 黄金华, 宋伟杰, 谭瑞琴. 聚合物分散液晶器件概述、发展趋势及应用研究进展[J]. 材料导报, 2024, 38(21): 23010078-8.
[6] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[7] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[8] 杨瑞锋, 贾波, 郭敏, 武晨航, 李金岳, 郝小军, 冯庆. Ti基Ru-Ir-Ti电极在稀氯化钠溶液中的电解失效行为[J]. 材料导报, 2024, 38(13): 22110104-5.
[9] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[10] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[11] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[12] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[13] 寇杰, 马东旭, 郑勇. 基于丝束电极技术的电偶腐蚀研究进展[J]. 材料导报, 2023, 37(23): 22040352-9.
[14] 吴嘉伦, 夏敏, 王军峰, 葛昌纯. 电极感应熔炼气雾化法制备粉末冶金增材制造原材料金属粉末的研究综述[J]. 材料导报, 2023, 37(21): 22040132-8.
[15] 郑德勇, 晋慧慧, 姬鹏霞. Co3S4电极材料的制备及在碱性析氢反应中的重构行为研究[J]. 材料导报, 2023, 37(18): 22040230-4.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed