Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1734-1737    https://doi.org/10.11896/cldb.18040192
  高分子与聚合物基复合材料 |
PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能
徐翔宇1,2, 李弘坤1,2, 詹达1,2, 刘向阳1,2
1 厦门大学材料学院,厦门 361005
2 厦门大学生物仿生及软物质研究院,厦门 361005
Semiconducting Properties of PEDOT∶PSS Doped Silk Fibroin Composite Film
XU Xiangyu1,2, LI Hongkun1,2 , ZHAN Da1,2, LIU Xiangyang1,2
1 College of Materials, Xiamen University, Xiamen 361005
2 Research Institution for Biomimetics and Soft Matter, Xiamen University, Xiamen 361005
下载:  全 文 ( PDF ) ( 8939KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了揭示丝素蛋白与有机半导体聚合物聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸(PEDOT∶PSS)复合薄膜作为有源层的场效应,采用旋涂制膜法在重掺杂氧化硅片上制备了厚度均一、表面平整度较好的场效应晶体管,并探索了这种生物相容性可降解材料作为半导体的潜质。通过XRD、紫外-可见光分光光度计、FTIR和拉曼光谱等表征手段研究了丝素蛋白与PEDOT∶PSS复合薄膜的构象变化。复合薄膜晶体管的输出和转移特性曲线表明,器件的开关电流比为3、阈值电压为20 V、场效应迁移率为7.9 cm2/(V·s)。实验结果表明,通过在丝素蛋白中添加PEDOT∶PSS制备复合材料依然能够有效保留有机半导体的优良电学性质,证明了通过对生物材料进行掺杂是一种制备功能化生物复合材料的有效手段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐翔宇
李弘坤
詹达
刘向阳
关键词:  丝素蛋白  聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸(PEDOT∶PSS)  有机场效应晶体管  功能化    
Abstract: In order to reveal the field effect of silk fibroin and organic semiconductor polymer (PEDOT∶PSS) composite film asan active layer, the thin film with uniform thickness and good surface smoothness based transistor was fabricated onto heavily doped silicon dioxide by spin-coating method. The potential in semiconductor application of this biocompatible degradable material was investigated. The conformational evolution of silk fibroin and PEDOT∶PSS composite film was analyzed by XRD, UV-Vis spectrophotometer, FTIR and Raman spectroscopy. The output and transfer characteristic curves of the device were analyzed and studied. The ratio of the switching current is about 3, the threshold voltage is 20 V, and the field-effect mobility is about 7.9 cm2/(V·s). The experimental results show that the composite material prepared by an appropriate process by mixing PEDOT∶PSS to silk fibroin can still retain the excellent electronic properties of organic semiconductors. It is proved that doping in biological materials is an effective method to prepare functionalized biocomposites for broadening its applications.
Key words:  silk fibroin    PEDOT∶PSS    organic field-effect transistor    functionalization
                    发布日期:  2019-05-16
ZTFLH:  TB34  
基金资助: 国家自然科学基金(11404272);中央高校基础研究基金项目(20720140514);福建省自然科学基金(22171024);国家教育部博士点专项基金(20130121110018)
通讯作者:  zhanda@xmu.edu.cn   
作者简介:  徐翔宇,于2015年3月至2018年6月在福建省厦门大学材料学院、生物仿生及软物质研究院就学,主要从事生物分子与二维复合材料的制备研究。2018年6月毕业于厦门大学,获得工学硕士学位。詹达,福建省厦门大学材料学院生物仿生及软物质研究院,副教授。2013年毕业于新加坡南洋理工大学,获得物理与应用物理专业博士学位。主要研究领域是通过生物分子的特性来探测调制二维电子材料的电子能带结构状况,包括潜在的生物传感等方面的应用。
引用本文:    
徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
XU Xiangyu, LI Hongkun , ZHAN Da, LIU Xiangyang. Semiconducting Properties of PEDOT∶PSS Doped Silk Fibroin Composite Film. Materials Reports, 2019, 33(10): 1734-1737.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040192  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1734
1 Sze S M, Ng K K. Physics of semiconductor devices,Xi'an Jiaotong University Press, China, 2008 (in Chinese).
施敏,伍国珏. 半导体器件物理,西安交通大学出版社,2008.
2 Hu W P. Organic field effect transistor,Science Press, China, 2015 (in Chinese).
胡文平. 有机场效应晶体管,科学出版社,2015.
3 Zhu B W, Wang H, Leow W R, et al. Advanced Materials, 2016, 28 (22), 4250.
4 Xing Y, Shi C Y, Zhao J H, et al. Small, 2017, 13 (40), 1702390.
5 Xu J, Wang S, Wang G J N, et al. Science, 2017, 355 (6320), 59.
6 Roth B, Savagatrup S, de Los Santos N V, et al. Chemistry of Materials, 2016, 28 (7), 2363.
7 Wu H C, Benight S J, Chortos A, et al. Chemistry of Materials, 2014, 26 (15), 4544.
8 Lin N B, Liu X Y. Chemical Society Reviews, 2015, 44 (21), 7881.
9 Rockwood D N, Preda R C, Yucel T, et al. Nature Protocols, 2011, 6 (10), 1612.
10 Lawrence B D, Omenetto F, Chui K, et al. Journal of Materials Science, 2008, 43 (21), 6967.
11 Chen Z W, Zhang H H, Lin Z F, et al. Advanced Functional Materials, 2016, 26 (48), 8978.
12 Motta A, Maniglio D, Migliaresi C, et al. Journal of Biomaterials Science:Polymer Edition, 2009, 20 (13), 1875.
13 Lu J, Pinto N J, Macdiarmid A G. Journal of Applied Physics, 2002, 92 (10), 6033.
14 Hsu F C, Prigodin V N, Epstein A J. Physical Review B, 2006, 74 (23), 235219.
15 Liu J, Agarwal M, Varahramyan K. Sensors and Actuators B:Chemical, 2008, 135 (1), 195.
16 Kang H S, Kang H S, Lee J K, et al. Synthetic Metals, 2005, 155 (1), 176.
17 Macaya D J, Nikolou M, Takamatsu S, et al. Sensors and Actuators B:Chemical, 2007, 123 (1), 374.
18 Brandon E J, West W, Wesseling E. Applied Physics Letters, 2003, 83 (19), 3945.
19 Blanchet G B, Fincher C R, Lefenfeld M, et al. Applied Physics Letters, 2004, 84 (2), 296.
20 Ming J, Pan F, Zuo B. International Journal of Biological Macromolecules, 2015, 75, 398.
21 Kim N, Lee B H, Choi D, et al. Physical Review Letters, 2012, 109 (10), 106405.
22 Semaltianos N G, Logothetidis S, Hastas N, et al. Chemical Physics Letters, 2010, 484 (4-6), 283.
23 Ouyang J, Xu Q F, Chu C W, et al. Polymer, 2004, 45 (25), 8443.
24 Lee E J H, Balasubramanian K, Weitz R T, et al. Nature Nanotechnology, 2008, 3 (8), 486.
[1] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[2] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[3] 董雨菲, 马建中, 刘超, 鲍艳, 林阳, 吴英柯. SiO2的功能化改性及其与聚合物基体的界面研究进展[J]. 材料导报, 2019, 33(11): 1910-1918.
[4] 赵鸣岐, 黄威嫔, 胡米, 任科峰, 计剑. 生物医用材料表面高分子基涂层的功能化构筑[J]. 材料导报, 2019, 33(1): 27-39.
[5] 包建民, 闫志英, 李优鑫. 微米级多孔聚苯乙烯-二乙烯苯微球的制备、改性及应用综述[J]. 材料导报, 2018, 32(17): 3060-3067.
[6] 杨守禄, 罗莎, 章磊, 姬宁, 李丹, 吴义强. 木塑复合材料功能化改性研究进展[J]. 材料导报, 2018, 32(17): 3090-3098.
[7] 张振江, 祝丽荔, 金娟. 聚氨酯泡沫吸附剂的制备及其在金属离子富集/分离方面的应用*[J]. 《材料导报》期刊社, 2017, 31(5): 34-39.
[8] 常艺, 裴久阳, 周苏生, 陈名海, 刘宁, 李清文. 功能化碳纳米管改性热塑性复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 84-90.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed