Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1014-1021    https://doi.org/10.11896/cldb.19100128
  |
氧化物功能薄膜器件的柔性化策略
王倩,高能,张天垚,姚光,潘泰松,高敏,林媛
电子科技大学电子薄膜与集成器件国家重点实验室,成都 610054
Flexibilization Strategies of Functional Oxide Thin Film Devices:a Review
WANG Qian,GAO Neng,ZHANG Tianyao,YAO Guang,PAN Taisong,GAO Min,LIN Yuan
State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China
下载:  全 文 ( PDF ) ( 6024KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以可延展和可弯曲为特点的柔性电子器件因其在信息、医疗、能源等领域的巨大前景而受到众多研究者的广泛关注,成为近年来的研究热点。氧化物功能薄膜材料由于其丰富的电学/磁学/光学等性能及独特的多场耦合特性,成为物理学和材料学的重要研究对象,并被应用于各种电学/光学器件中。随着器件越来越多地应用于各种复杂曲面环境以及与人体或人体组织密切贴合,对氧化物薄膜器件可延展和可弯曲等柔性化的需求日益迫切。
由于高质量氧化物薄膜的生长需要较高的温度,且对生长基底和薄膜之间的界面控制要求较高,因此,氧化物薄膜与可延展柔性基底的集成存在很大的挑战。将氧化物薄膜直接沉积在柔性金属箔片或高分子基底上,需要克服金属基底与薄膜界面控制困难或高分子基底对生长温度的耐受性差等困难。在刚性基底上沉积功能氧化物薄膜后,通过剥离、转印到可延展柔性基底上是一种解决方案。但其中的挑战在于如何可控地将薄膜完整地从生长基底剥离。针对这一挑战,发展了通过化学刻蚀牺牲层的化学转印技术和通过范德瓦尔斯外延或激光剥离的物理剥离方法。
本文综述了近年来发展的氧化物薄膜器件柔性化的若干进展,归纳了以上几种主要的柔性化策略,包括在金属基底、高分子基底等柔性基底上直接生长和通过化学刻蚀和物理剥离转印等技术实现的柔性化,分析了几种柔性化策略的优势和局限性,总结了柔性氧化物薄膜器件制备中的挑战和机遇。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王倩
高能
张天垚
姚光
潘泰松
高敏
林媛
关键词:  金属氧化物  功能薄膜  柔性化策略  直接生长法  化学转印法  物理剥离法    
Abstract: Flexible electronic devices, which are characterized by stretchability and bendability, have attracted tremendous interests because of their great application potential in the fields of information, medicine, energy and so on. Functional oxide thin-film materials have become an important research object in physics and materials science due to their rich electrical, magnetic, optical and unique multi-field coupling properties, and wide usage in the electronic and optoelectronic devices. With more and more devices being introduced to various complex curved surfaces and contact with human or human tissue, the demand for flexible oxide film devices such as stretchability and bendability is becoming more and more urgent.
Due to the high temperature required for the growth of high-quality oxide films and the critical requirements for the interface control between the substrate and the film, the integration of oxide films with the stretchable and flexible substrates faces huge challenges. To deposit the oxide film directly on a flexible metal foil or a polymer substrate, it is necessary to overcome the difficulties of controlling the interface between the metal substrate and the film or the poor tolerance of the polymer substrate to the growth temperature. After depositing functional oxide films on rigid substrates, peeling and transferring thin films to a stretchable and flexible substrate is another solution. But the challenge is how to peel the film controllably and completely from the growth substrate. In response to this challenge, the chemical transfer printing technology by etching sacrificial layer and the physical stripping method by van der Waals epitaxy or laser stripping were developed.
In this paper, the development of flexibility oxide thin film devices in recent years is reviewed. Main flexibility strategies are summarized, including direct growth on flexible substrates such as metal substrates and polymer substrates, and transfer-printing after chemical etching or physical stripping.The advantages and limits of these strategies are analyzed. The challenges and opportunities in the fabrication of flexible oxide thin film devices are summarized.
Key words:  metal oxide    functional thin film    strategies of flexibilization    direct growth method    chemical transfer method    physical stripping method
                    发布日期:  2020-01-15
ZTFLH:  O484.1  
基金资助: 国家重点基础研究发展计划(2015CB351905);国家自然科学基金(61825102;51872038;61901085)
通讯作者:  gyao@uestc.edu.cn; linyuan@uestc.edu.cn   
作者简介:  王倩,2019年6月毕业于四川师范大学,获得硕士学位。现为电子科技大学博士研究生,在林媛教授的指导下进行研究。目前主要研究方向为柔性电子器件的设计和制造。
林媛,1999年在中国科学技术大学获得物理学博士学位。目前,任电子科技大学教授。她的研究方向主要涉及到氧化物薄膜的制备及其在无机柔性电子器件中的应用。
姚光,2019年在电子科技大学微电子学与固体电子学专业获得博士学位。目前,任电子科技大学副研究员,他的研究方向为柔性电子器件的设计和制造,如可穿戴生物医学器件和生物可降解电子器件。
引用本文:    
王倩,高能,张天垚,姚光,潘泰松,高敏,林媛. 氧化物功能薄膜器件的柔性化策略[J]. 材料导报, 2020, 34(1): 1014-1021.
WANG Qian,GAO Neng,ZHANG Tianyao,YAO Guang,PAN Taisong,GAO Min,LIN Yuan. Flexibilization Strategies of Functional Oxide Thin Film Devices:a Review. Materials Reports, 2020, 34(1): 1014-1021.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100128  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1014
1 Han S T, Zhou Y, Roy V A L.Advanced Materials, 2013, 38, 5424.
2 Yao G, Kang L, Li J, et al.Nature Communications, 2018, 9, 5349.
3 Kohlstedt H, Mustafa Y, Gerber A, et al.Microelectronic Engineering, 2005, 80, 296.
4 Kim J, Son D, Lee M, et al.Science Advances, 2016, 2, 1501101.
5 Yao G, Jiang D W, Li J, et al.ACS Nano, 2019, 13, 12345.
6 Kai L, Xiong Y, Tang M H, et al.Integrated Ferroelectrics, 2015, 167, 62.
7 Baek S H, Park J, Kim D M, et al.Science, 2011, 334, 958.
8 Long Y, Wei H, Li J, et al.ACS Nano, 2018, 12, 12533.
9 Cheng T, Zhang Y, Lai W Y, et al.Advanced Materials, 2015, 27, 3349.
10 Liao C Z, Zhang M, Yao M Y, et al.Advanced Materials, 2015, 27, 7493.
11 Liu W, Song M S, Kong B, et al.Advanced Materials, 2017, 29, 1603436.
12 Fan F R, Tang W, Wang Z L.Advanced Materials, 2016, 28, 4283.
13 Bao Z N, Chen X D.Advanced Materials, 2016, 28, 4177.
14 Lin S T, Yuk H, Zhang T, et al.Advanced Materials, 2016, 28, 4497.
15 Yan C Y, Kang W B, Wang J X, et al.ACS Nano, 2014, 8, 316.
16 Kim D H, Rogers J A.Advanced Materials, 2008, 20, 4887.
17 Pang C, Lee C, Suh K Y. Journal of Applied Polymer Science, 2013, 130, 1429.
18 Trung T Q, Lee N E.Advanced Materials, 2016, 28, 4338.
19 Segev-Bar M, Haick H.ACS Nano, 2013, 7, 8366.
20 Kim D H, Lu N S, Ma R, et al. Science, 2011, 333, 838.
21 Takei K, Honda W, Harada S, et al. Advanced Healthcare Materials, 2015, 4, 487.
22 Zang Y P, Zhang F J, Di C A, et al.Materials Horizons, 2015, 2, 140.
23 Kim J, Lee M, Shim H J, et al.Nature Communications, 2014, 5, 5747.
24 Yamada T, Hayamizu Y, Yamamoto Y, et al.Nature Nanotechnology, 2011, 6, 296.
25 Yao G, Ji Y D, Liang W Z, et al.Nanoscale, 2017, 9, 3068.
26 Yao G, Gao M, Ji Y D, et al.Scientific Reports, 2016, 6, 3468.
27 Lin Y, Feng D Y, Gao M, et al.Journal of Materials Chemistry C, 2015, 3, 3438.
28 Gao M, Feng D, Yao G, et al.RSC Advances, 2015, 5, 92958.
29 Du H, Liang W Z, Li Y, et al.Journal of Alloys and Compounds, 2015, 642, 166.
30 Du H, Liang W Z, Li Y, et al.Journal of Nanomaterials, 2015, 167569.
31 Du H, Liang W Z, Li Y, et al.Integrated Ferroelectrics, 2015, 159, 127.
32 Liang W Z, Li Z, Bi Z X, et al.Journal of Materials Chemistry C, 2014, 2, 708.
33 Liang W Z, Ji Y D, Nan T X, et al.ACS Applied Materials & Interfaces, 2012, 4, 2199.
34 Liang W Z, Ji Y D, Nan T X, et al.Chinese Physics B. 2012, 21, 067701.
35 Kanno I, Fujii S, Kamada T, et al. Applied Physics Letters, 1997, 70, 1378.
36 Park G T, Choi J J, Ryu J, et al.Applied Physics Letters, 2002, 80, 4606.
37 Sivanandan K, Achuthan A T, Kumar V,et al.Sensors and Actuators A: Physical, 2008, 148, 134.
38 Yeo H G, Ma X K, Rahn C, et al.Advanced Functional Materials, 2016, 1.
39 Seveno R, Carbajo J, Dufay T, et al.Journal of Physics D: Applied Phy-sics, 2017, 50, 165502.
40 Bharadwaja S S N, Kulik J, Akarapu R, et al.IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 2182.
41 Yao M Y, Zhao X, Zhang J X, et al.Nanotechnology, 2018, 30, 085404.
42 Yang T L, Zhang D H, Ma J, et al.Thin Solid Films, 1998, 326, 60.
43 Zhang D H, Yang T L, Ma J, et al. Applied Surface Science, 2000, 158, 43.
44 Choi M C, Kim Y, Ha C S, et al.Progress in Polymer Science, 2008, 6, 581.
45 Khang D Y, Jiang H Q, Huang Y, et al.Science, 2006, 311, 208.
46 Guerin D, Merckling C, Lenfant S, et al.Journal of Physical Chemistry C, 2007, 111, 7947.
47 Chen P, Lau S S, Chu P K, et al. Applied Physics Letters, 2005, 87, 111910.
48 Unnikrishnan S, Jansen H, Berenschot E, et al.Journal of Micromecha-nics and Microengineering, 2008, 18, 064005.
49 Liang W Z, Gao M, Lu C, et al. ACS Applied Materials & Interfaces, 2018, 10, 8341.
50 Liao F Y, Yan Z C, Liang W Z, et al.Journal of Alloys and Compounds, 2017, 705, 468.
51 Liao F Y, Zhu Z, Yan Z C, et al.Journal of Breath Research, 2017, 11, 036002.
52 Liao F Y, Lu C, Yao G, et al.IEEE Electron Device Letters, 2017, 38, 1128.
53 Yang Z, Ko C, Ramanathan S.Annual Review of Materials Research, 2011, 41, 337.
54 Wu C, Feng F, Xie Y.Chemical Society Reviews, 2013, 42, 5157.
55 Lee D, Lee J, Song K, et al.Nano Letters, 2017, 17, 5614.
56 Kumar R T R, Karunagaran B, Mangalaraj D, et al.Sensors and Actuators A: Physical, 2003, 107, 62.
57 Choi H S, Ahn J S, Jung J H, et al.Physical Review B: Condensed Matter, 1996, 54, 4621.
58 Yao G, Pan T S, Yan Z C, et al.Nanoscale, 2018, 10, 3893.
59 Shen L K, Wu L, Sheng Quan, et al.Advanced Materials, 2017, 1702411.
60 Wang H, Shen L, Duan T Z, et al. ACS Applied Materials & Interfaces 2019, 11, 22677.
61 Zhang Y, Shen L K, Liu M, et al.ACS Nano, 2017, 11, 8002.
62 Ji D X, Cai S H, Paudel T R, et al.Nature, 2019, 570, 87.
63 Bitla Y, Chu Y H.FlatChem, 2017, 3, 26 .
64 Jiang J, Bitla Y, Huang C W, et al.Science of Advanced Materials, 2017, 3, 1700121.
65 Amrillah T, Bitla Y, Shin K, et al.ACS Nano, 2017, 11, 6122.
66 Gao W X, You L, Wang Y J, et al.Advanced Electronic Materials, 2017, 1600542,1.
67 Hou W X, Zhou Z Y, Zhang L, et al.ACS Applied Materials & Interfaces, 2019, 11, 21727.
68 Li M L, Wang Y B, Wang Y, et al.Ceramics International, 2017, 43, 15442.
69 Chu Y H.npj Quantum Materials, 2017, 2, 67.
70 Park K, Son J H, Hwang G T, et al.Advanced Materials, 2014, 26, 2514.
71 Kim S, Son J H, Lee S H, et al.Advanced Materials, 2014, 26, 7480.
72 Lee H E, Kim S, Ko J, et al.Advanced Functional Materials, 2016, 26, 6170.
73 Kim S, Lee H E, Choi H, et al.ACS Nano, 2016, 10, 10851.
74 Yen M, Bitla Y, Chu Y H.Materials Chemistry and Physics, 2019, 234, 185.
75 Ma C H, Lin J C, Liu H J, et al.Applied Physics Letters, 2016, 108, 253104.
76 Tsai M F, Jiang J, Shao P W, et al.ACS Applied Materials & Interfaces, 2019, 11, 25882.
[1] 姚进, 毛龙, 刘小超, 李知函. 利用分级结构层状黏土构建高阻隔性脂肪族聚酯复合材料[J]. 材料导报, 2019, 33(Z2): 617-622.
[2] 岳瑞瑞, 王会才, 刘霞平, 杨继斌, 汪振文. 可拉伸超级电容器碳基复合电极材料的研究进展[J]. 材料导报, 2019, 33(21): 3580-3587.
[3] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[4] 张玮倩, 许秀玲, 周国伟. 二元及三元过渡金属氧化物的制备及其电化学应用研究进展[J]. 材料导报, 2018, 32(21): 3731-3736.
[5] 荆秋叶, 彭冬, 袁小亚. 煅烧型锌铝水滑石光还原 Cr(Ⅵ)[J]. 《材料导报》期刊社, 2018, 32(14): 2345-2350.
[6] 李晨旭, 彭伟, 方振东, 刘杰. 过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化及氧化降解水中污染物的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2223-2229.
[7] 陈明鹏, 张裕敏, 张瑾, 柳清菊. 苯系物(BTEX)检测气敏材料研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2278-2287.
[8] 唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
[9] 刘蕊蕊, 冀志江, 谭建杰, 王静, 张琎珺, 廖祥. 海泡石基金属氧化物复合材料的合成及其光催化性能研究进展*[J]. CLDB, 2017, 31(9): 152-157.
[10] 毛龙, 刘跃军, 白永康, 刘小超. 原位接枝聚合改性LDHs/PCL纳米复合薄膜的制备及氧气阻隔性能*[J]. 《材料导报》期刊社, 2017, 31(18): 43-48.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed