Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2223-2229    https://doi.org/10.11896/j.issn.1005-023X.2018.13.013
  无机非金属及其复合材料 |
过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化及氧化降解水中污染物的研究进展
李晨旭, 彭伟, 方振东, 刘杰
陆军勤务学院军事设施系,重庆 401331
Water Pollutants Oxidation Degradation Through the Activation ofPeroxymonosulfate (PMS) Heterogeneously Catalyzedby Transition Metal Oxide: a Review
LI Chenxu, PENG Wei, FANG Zhendong, LIU Jie
Department of Military Facilities, Army Logistics University of PLA, Chongqing 401331
下载:  全 文 ( PDF ) ( 1353KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,水体中富集的难降解污染物导致了诸多环境问题,传统水处理工艺并不能对其进行有效处理。高级氧化技术是目前处理难降解污染物的最有效方法。过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化生成硫酸根自由基(SO4-·)处理水体中难降解污染物是近些年新兴的高级氧化技术,与以生成羟基自由基(·OH)为基础的传统高级氧化技术相比,该技术具有对pH适应范围更宽、中性条件下氧化性更强、自由基半衰期更长的优势,同时也克服了均相催化体系中金属离子的二次污染、难以重复利用的问题,受到环境领域学者的广泛关注,为去除水体中抗生素、激素等难降解污染物提供了新的思路和方法。   然而,由于活性点位的减少,相较于均相催化,非均相催化的催化效率更低,同时也存在催化稳定性差、难以回收等不足。针对上述问题,近几年除了探寻对PMS的活化具有催化活性的新型过渡金属氧化物外,研究者主要从催化材料的负载、改性以及复合三方面进行尝试,并取得了丰富的研究成果,在发挥非均相催化经济、环保优势的同时,大幅提高了催化剂的催化效率及可回收性,为其步入实际应用做出了巨大的贡献。   在众多过渡金属元素中,钴、铁、锰的氧化物已被证明对PMS的活化具有催化活性并得到了广泛的研究。其中,由于钴离子对PMS表现出最强的活化能力,因此对钴系氧化物研究得最早。随后,铁及锰的氧化物因环境友好、廉价易得的优势逐渐成为钴氧化物的替代品。近五年的研究工作将纳米碳、介孔材料以及金属-有机框架等引入催化剂的制备合成中,对过渡金属氧化物进行负载和改性,加强了催化材料的电子传递速度和化学稳定性,为解决催化剂的催化效率低与催化稳定性差等问题提供了有效方法。此外,以两种过渡金属元素为催化核心的二元复合材料,在降低催化剂制作成本的同时,还可以实现催化剂效能和稳定性的双重提高。   文章介绍了钴系氧化物、锰系氧化物、铁系氧化物等三种能够催化PMS活化的一元非均相催化剂的研究进展,并阐述了二元复合催化剂的研究现状,总结了现阶段研究的不足并对未来的发展方向做出了展望,以期为制备经济高效的过渡金属氧化物催化剂提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晨旭
彭伟
方振东
刘杰
关键词:  高级氧化技术  非均相催化  过渡金属氧化物  过硫酸氢盐  水污染  降解    
Abstract: In recent years, the enrichment of refractory pollutants in water has caused numerous environmental issues, which cannot be treated effectively by traditional water treatment process. Advanced oxidation techniques are recognized to be the most effective method to degrade refractory pollutants. An emerging advanced oxidation technique based on sulfate radical (SO4-·) generated from activating PMS catalyzed by heterogeneous catalysts (transition metal oxide) has been developed to degrade the refractory pollutants in wastewater. Compared with traditional advanced oxidation technique, the new technique features wider adaptability range of pH, stronger oxidizability under neutral conditions and longer half-life of free radicals. Besides, it overcomes the secondary pollution problem of metal ions in homogeneous catalytic system as well as their difficulty in recycling. This newly developed advanced oxidation technique has been drawn tremendous attention from scholars of environmental fields and are expected to provides new ideas and methods for removing refractory water pollutants like antibiotics and hormones etc.   Nevertheless, due to the reduction of active sites, heterogeneous catalysis presents lower catalytic efficiency than that of homogeneous catalysis, with poor catalytic stability and poor recyclability as well. This urges intensive research endeavors to seek new transition metal oxide catalysts and modify existing catalysts for PMS activation, aiming at improving catalytic efficiency and recyclability of catalysts while exploiting economic and environmental advantages of heterogeneous catalysis. Impressive strides have been made in researches of heterogeneous transition metals for PMS activation in recent years, which greatly contribute to its practical application.   In many transition metals, the oxides of cobalt, iron, and manganese have been proved to have catalytic activity on PMS activation. Cobalt oxides were studied first since cobalt ions show the strongest activation ability for PMS. Subsequently, the oxides of iron and manganese have gradually become the substitutes for cobalt oxides due to their environmental friendliness and cheapness. Research works in the past five years have established new methods to overcome the bottleneck of low catalytic efficiency and poor catalytic stability, which introduce various new materials like nanostructured carbon, mesoporous materials, metal organic frameworks in the preparation of catalysts to modify the transition metals oxides and result in an increased electron transfer speed and an enhanced chemical stability. Moreover, researchers also have demonstrated that binary composite materials containning two transition metal catalytic cores exhibit improvements in both catalytic efficiency and stability.    The research progress and synthesis of Co-based, Mn-based and Fe-based monobasic catalysts are introduced in this article. The present researches of binary composite catalysts are reviewed. Finally, the current existing shortcomings and the prospects of this newly developed technique are discussed. There are reasons to believe that heterogeneous catalysis of PMS activation by transition metal oxide has a bright future in degradation of refractory pollutants in wastewater.
Key words:  advanced oxidation technique    heterogeneous catalysis    transition metal oxide    peroxymonosulfate (PMS)    water pollution    degradation
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  X52  
基金资助: 国家自然科学基金(51508564);重庆研究生科研创新项目(CYB16126;CYS17301);海军后勤科研计划项目(CHJ13J021)
通讯作者:  方振东:通信作者,男,教授,主要从事水处理理论与技术的研究 E-mail:fzdhg@tom.com   
作者简介:  李晨旭:男,1993年生,硕士研究生,主要从事水处理理论与技术的研究
引用本文:    
李晨旭, 彭伟, 方振东, 刘杰. 过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化及氧化降解水中污染物的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2223-2229.
LI Chenxu, PENG Wei, FANG Zhendong, LIU Jie. Water Pollutants Oxidation Degradation Through the Activation ofPeroxymonosulfate (PMS) Heterogeneously Catalyzedby Transition Metal Oxide: a Review. Materials Reports, 2018, 32(13): 2223-2229.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.013  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2223
1 Glaze W H, Kang J W, Chapin D H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation[J].Ozone-science & Engineering,1987,9(4):335.
2 Guo X. Advanced treatment of papermaking wastewater by sulfate radical-based advanced oxidation process[D].Guangzhou: South China University of Technology,2013(in Chinese).
郭鑫.基于硫酸根自由基的高级氧化法深度处理造纸废水的研究[D].广州:华南理工大学,2013.
3 Ghanbari F, Moradi F. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J].Chemical Engineering Journal,2017,310:41.
4 Chen X Y, Xu Z Y, Wu D, et al. The advanced oxidation technology based on sulfate radical and application in water treatment[J].Technology of Water Treatment,2009,35(5):16(in Chinese).
陈晓旸,薛智勇,吴丹,等.基于硫酸自由基的高级氧化技术及其在水处理中的应用[J].水处理技术,2009,35(5):16.
5 Hussain H, Green I, Ahmed I. Journey describing applications of PMS in synthetic chemistry[J].Chemical Reviews,2013,113:3329.
6 Stanislaw W, Holger V, Klaudiusz G. Chemistry of persulfates in water and wastewater treatment: A review[J].Chemical Engineering Journal,2017,330:44.
7 Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants[J].Environmental Science & Technology,2004,38(13):3705.
8 Han Q, Yang S Y, Yang X. Cobalt catalyzed peroxymonosulfate oxidation: A review of mechanisms and applications on degradating organic pollutants in water[J].Progress in Chemistry,2012,24(1):145(in Chinese).
韩强,杨世迎,杨鑫.钴催化过一硫酸氢盐降解水中有机污染物机理及应用研究[J].化学进展,2012,24(1):145.
9 Anipsitakis G P, Dionysiou D D. Heterogeneous activation of oxone using Co3O4[J].The Journal of Physical Chemistry B,2005,109(27):13052.
10 Wang Y, Zhou L, Duan X, et al. Photochemical degradation of phenol solutions on Co3O4 nanorods with sulfate radicals[J].Catalysis Today,2015,258:576.
11 Deng J, Feng S F, Zhang K, et al. Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH[J].Chemical Engineering Journal,2016,308:505.
12 Anbia M, Rezaie M. Synthesis of supported ruthenium catalyst for phenol degradation in the presence of peroxymonosulfate[J].Water, Air, & Soil Pollution,2016,227(9):349.
13 Qi F, Chu W, Xu B, Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate[J].Applied Catalysis B: Environmental,2013,s134-135(9):324.
14 Lin K Y A, Chang H A. Zeolitic imidazole framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water[J].Journal of the Taiwan Institute of Chemical Engineers,2015,53:40.
15 Zhu Y P, Ren Z Y, Yuan Z Y. Co2+-loaded periodic mesoporous aluminum phosphonates for efficient modified Fenton catalysis[J].RSC Advances,2015,5(10):7628.
16 Zhang W, Tay H L, Lim S S, et al. Supported cobalt oxide on MgO: Highly efficient catalysts for degradation of organic dyes in dilute solutions[J].Applied Catalysis B: Environmental,2010,95:93.
17 Wang L P. Progress in application of metal-organic frameworks in photocatalytic reactions[J].Materials Review A: Review Papers 2017,31(13):51(in Chinese).
王丽苹.金属有机骨架材料在光催化反应中的应用研究进展[J].材料导报:综述篇,2017,31(13):51.
18 Zeng T, Zhang X, Wang S, et al. Spatial confinement of a Co3O4 catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants[J].Environmental Science & Technology,2015,49(4):2350.
19 Lin K Y A, Chen Y C, Huang C F. Magnetic carbon-supported cobalt prepared from one-step carbonization of hexacyanocobaltate as an efficient and recyclable catalyst for activating PMS[J].Separation and Purification Technology,2016,170:173.
20 Xu P, Zeng G M, Huang D L, et al. Use of iron oxide nanomaterials in wastewater treatment: A review[J].Science of the Total Environment,2012,424:1.
21 Cundy A B, Hopkinson L, Whitby R L D. Use of iron-based technologies in contaminated land and groundwater remediation: A review[J].Science of the Total Environment,2008,400(1-3):42.
22 Chen D, Ma X, Zhou J, et al. Sulfate radical-induced degradation of acid orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process[J].Journal of Hazardous Materials,2014,279:476.
23 Wei X Y. Research of heterogenous Fe2O3 in activation of peroxymonosulfate for decolorization of Rhodamine B[D].Harbin: Harbin Institute of Technology,2013(in Chinese).
魏熙宇.三氧化二铁催化过硫酸氢钾降解罗丹明B的研究[D].哈尔滨:哈尔滨工业大学,2013.
24 Sun H, Zhou G, Liu S, et al. Nano-Fe0 encapsulated in microcarbon spheres: Synthesis, characterization, and environmental applications[J].ACS Applied Materials & Interfaces,2012,4(11):6235.
25 Gong F, Wang L, Li D, et al. An effective heterogeneous iron-based catalyst to activate peroxymonosulfate for organic contaminants removal[J].Chemical Engineering Journal,2015,267:102.
26 Du J, Bao J, Liu Y, et al. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A[J].Journal of Hazardous Materials,2016,320:150.
27 Wang Y, Xie Y, Sun H, et al. 2D/2D nano-hybrids of γ-MnO2 on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation[J].Journal of Hazardous Materials,2016,301(6):56.
28 Wei M, Ruan Y, Luo S, et al. The facile synthesis of a magnetic OMS-2 catalyst for decomposition of organic dyes in aqueous solution with peroxymonosulfate[J].New Journal of Chemistry,2015,39(8):6395.
29 Liu C, Pan D,Tang X, et al. Degradation of rhodamine B by the α-MnO2/peroxymono-sulfate system[J].Water, Air, & Soil Pollution,2016,227(3):92.
30 Saputra E, Muhammad S, Sun H, et al. Manganese oxides at diffe-rent oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions[J].Applied Catalysis B: Environmental,2013,142(3):729.
31 Saputra E, Muhammad S, Sun H, et al. Different crystallographic one-dimensional MnO2 nano-materials and their superior perfor-mance in catalytic phenol degradation[J].Environmental Science & Technology,2013,47(11):5882.
32 Wang Y, Indrawirawan S, Duan X, et al. New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional α-MnO2 nanostructures[J].Chemical Engineering Journal,2015,266:12.
33 Saputra E, Muhammad S, Sun H, et al. Shape-controlled activation of peroxymonosulfate by single crystal α-Mn2O3 for catalytic phenol degradation in aqueous solution[J].Applied Catalysis B: Environmental,2014,154:246.
34 Zhang G C, Zhang J, Wan Z Q, et al. Degradation of acid orange 7 by peroxomonosulfate activated with Fe-MnOx[J].Environmental Science and Pollution Research,2015,28(12):1902(in Chinese).
张古承,张静,万子谦等.铁锰双金属氧化物对过硫酸氢钾降解酸性橙7的催化效果[J].环境科学研究,2015,28(12):1902.
35 Wan Z, Wang J. Degradation of sulfamethazine antibiotics using Fe3O4-Mn3O4 nano-composite as a fenton-like catalyst[J].Journal of Chemical Technology and Biotechnology,2017,92(4):874.
36 Feng Y, Wu D L, Deng Y, et al. Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: Synergistic effects and mechanisms[J].Environmental Science & Technology,2016,50(6):3119.
37 Liu J. Catalytic peroxide oxidation of chlorophenol in aqueous solution in presence of Fe3O4 nanoparticles or its composites[D].Harbin: Harbin Institute of Technology,2014(in Chinese).
刘杰.纳米Fe3O4及其复合材料催化过氧化物去除水中氯酚的研究[D].哈尔滨:哈尔滨工业大学,2014.
38 Saputra E, Muhammad S, Sun H, et al. A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions[J].Journal of Colloid and Interface Science,2013,407:467.
39 Liu J, Zhao Z W, Shao P H. Activation of peroxymonosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation[J].Chemical Engineering Journal,2015,262(9):854.
40 Bard A J, Parsons R, Jordan J. Standard potentials in aqueous solution[M].CRC Press, New York,1985.
41 Nie G, Huang J, Hu Y, et al. Heterogeneous catalytic activation of peroxymonosulfate for efficient degradation of organic pollutants by magnetic CuO/Fe3O4 submicron composites[J].Chinese Journal of Catalysis,2017,38:227.
42 Feng Y, Liao C, Li H. Cu2O-promoted degradation of sulfametho-xazole by α-Fe2O3-catalyzed peroxymonosulfate under circumneutral conditions: Synergistic effect, Cu/Fe ratios, and mechanisms[J].Environmental Technology,2017,39(1):1.
43 Zhang D W. Research on catalysis of CuO-CeO2 binary mixed oxides for PMS degradation of phenol[D].Harbin: Harbin Institute of Technology,2013(in Chinese).
张丹微.铜铈二元混合氧化物催化过硫酸氢钾降解苯酚研究[D].哈尔滨:哈尔滨工业大学,2013.
44 Ding Y B, Zhu L H, Wang N, et al. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate[J].Applied Catalysis B: Environmental,2013,129:153.
45 Ren Y, Lin L, Ma J, et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4(M=Co,Cu,Mn,and Zn) as heterogeneous catalysts in the water[J].Applied Catalysis B: Environmental,2015,165:572.
46 Feng Y, Liu J, Wu D, et al. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J].Chemical Engineering Journal,2015,280:514.
47 Tan C, Gao N, Fu D, et al. Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate[J].Separation and Purification Technology,2017,175:47.
48 Yao Y, Cai Y, Wu G, et al. Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3-xO4) for Fenton-Like reaction in water[J].Journal of Hazardous Materials,2015,296:128.
49 Oh W D, Lua S K, Dong Z L, et al. A novel three-dimensional spherical CuBi2O4 consisting of nanocolumn arrays with persulfate and peroxymonosulfate activation functionalities for 1H-benzotriazole removal[J].Nanoscale,2015,7(17):8149.
50 Oh W D, Chang V W, Lim T T. A comprehensive performance eva-luation of heterogeneous Bi2Fe4O9/peroxymonosulfate system for sulfamethoxazole degradation[J].Environmental Science and Pollution Research International,2017:1.
[1] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[2] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[3] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[4] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[5] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
[6] 安伟佳, 田玲玉, 芮玉兰, 高雅萌, 崔文权. Ag@AgCl/Bi2WO6复合光催化剂的制备及可见光催化性能[J]. 材料导报, 2019, 33(12): 1932-1938.
[7] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[8] 王鑫, 石敏, 余晓磊, 彭少贤, 赵西坡. 聚己二酸对苯二甲酸丁二酯(PBAT)共混改性聚乳酸(PLA)高性能全生物降解复合材料研究进展[J]. 材料导报, 2019, 33(11): 1897-1909.
[9] 杨立, 罗日方, 雷洋, 王云兵. 微创介入全降解血管支架和心脏瓣膜国内外研发现状与研究前沿[J]. 材料导报, 2019, 33(1): 40-47.
[10] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[11] 王蒙, 宋海硕, 郭建兵. 阻燃型玻纤增强尼龙10T复合材料的热氧老化行为及热降解动力学[J]. 《材料导报》期刊社, 2018, 32(8): 1344-1351.
[12] 赵立臣, 宋玉婷, 张喆, 王新, 王铁宝, 崔春翔. 可降解生物医用Zn-1Al合金的制备及性能研究[J]. 《材料导报》期刊社, 2018, 32(7): 1192-1196.
[13] 郭思文, 邵媛, 古正富, 任国富, 张华光. 锌含量对铝基可降解合金降解速率的影响[J]. 材料导报, 2018, 32(6): 947-950.
[14] 刘广增, 董永春, 李冰, 王鹏, 崔桂新. 酒石酸铁改性废旧棉织物Fenton反应催化剂的制备及其应用性能研究[J]. 材料导报, 2018, 32(6): 888-893.
[15] 田欢, 赵卓, 赖莉, 张梦龙. 含铊废水的处理方法的研究现状及发展趋势[J]. 材料导报, 2018, 32(23): 4100-4106.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed