Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 40-47    https://doi.org/10.11896/cldb.201901004
  生物医学工程领域的高技术关键材料 |
微创介入全降解血管支架和心脏瓣膜国内外研发现状与研究前沿
杨立, 罗日方, 雷洋, 王云兵
四川大学国家生物医学材料工程技术研究中心,成都 610064
Frontier Research and Development of Minimally Invasive and Interventional Fully Biodegradable Stent and Heart Valve
YANG Li, LUO Rifang, LEI Yang, WANG Yunbing
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064
下载:  全 文 ( PDF ) ( 1847KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 心血管疾病是世界范围内的头号健康杀手。我国心血管疾病患者近3亿人,心血管疾病死亡人数约300万人/年,占所有疾病致死总人数45%。临床主要心血管疾病是冠心病和心脏瓣膜疾病。目前,微创介入治疗因风险小、手术时间快、创伤小、恢复快,已成为心血管疾病治疗最为有效的手段和主流趋势。因此,心血管微创介入材料与器械已成为心血管疾病治疗领域研究的热点。随着全球医疗器械市场稳健快速发展,心血管器械已成为医疗器械行业中仅次于体外诊断的第二大市场。
   心血管介入医疗器械领域的两个市场前景广阔的代表性产品是全降解血管支架和经导管心脏瓣膜。全降解支架克服了传统支架植入后长期存留在血管中会引起潜在的慢性炎症、晚期血栓及需长期进行抗血小板治疗等问题,已成为当下心血管植介入领域的研究热点及焦点。全降解血管支架根据材料的不同可分为全降解聚合物血管支架与全降解金属血管支架。因采用的材料性能各异,支架的制备方式也大有不同。近10多年来,微创介入式生物瓣膜产品研发取得了快速发展。相关国产产品自2017年起已获得CFDA批准上市并在临床上大规模应用。然而现有的生物瓣膜仍然存在使用寿命较短、适用人群受限、置入准备过程繁琐、无法紧急应用导致的各类手术风险等不足,因此,研发具有更加优良的抗钙化、防周漏、可预装等性能的瓣膜已成为当前微创介入瓣膜研究的趋势与前沿。
   本文详细总结了心血管介入医疗器械领域的两个代表性产品(全降解血管支架和经导管心脏瓣膜)的国内外研发现状及研究前沿,并讨论了目前研究中存在的难题和解决思路。最后展望了未来该领域的研究方向及前景,为相关研究者提供借鉴与参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨立
罗日方
雷洋
王云兵
关键词:  医用介入材料及器械  心血管微创介入器械  全降解血管支架  心脏瓣膜    
Abstract: Cardiovascular disease is the leading cause of death worldwide. There are nearly 300 million patients with cardiovascular diseases in China, and the number of deaths is about 3 million each year, accounting for 45% of the total deaths from all diseases. The main cardiovascular di-seases are coronary heart disease and heart valve disease. At present, due to its low risk, fast operation, small trauma and fast recovery, minimally invasive interventional therapy is the most effective means in the treatment of cardiovascular diseases. Therefore, minimally invasive interventional cardiovascular devices have become hot topics in this field. With the steady and rapid development of the global medical device market, cardiovascular devices are the second largest market in the medical device industry.
Fully biodegradable stents can overcome the potential problems of chronic inflammation, late thrombosis and long-term antiplatelet treatment caused by current market available drug eluting metallic stents, which is a key research field of minimally invasive and interventional cardiovascular medical device. Fully biodegradable stents can be divided into fully degradable polymeric stents and fully degradable metallic stents. In recent years, FDA has approved some minimally invasive interventional heart valve products. Chinese companies also keep up with the pace, related products have been approved by CFDA. However, the existing valves still have drawbacks such as durability,calcification,and toxicity, etc.. Therefore, the research and development of heart valves with better properties have become the trend and frontier of minimally invasive and interventional cardiovascular medical devices.
In this paper, the current research status and research frontier of two representative products, including the biodegradable vascular stent and transcatheter heart valve implantation products, are described in detail. The existing problems and challenges in the research and product deve-lopment are also discussed. Finally, the development direction and future of this research field are also prospected. We hope the content of this review paper could provide reference for the relevant researchers.
Key words:  Key words implantable biomaterials and devices    minimally invasive and interventional cardiovascular medical devices    fully biodegradable stent    heart valve
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TB34  
  R-1  
  R318  
基金资助: 十三五国家重点研发计划(2016YFC1102200;2017YFC1104200);四川省重大科技支撑计划(2014SZ0128;2018SZDZX0011)
作者简介:  杨立,女,青年教师,目前主要研究领域为心血管生物材料及器械研究,现为四川大学国家生物医学材料工程研究中心主任助理。王云兵,男,教授,博士生导师;国家生物医学材料工程技术研究中心主任,中国生物材料学会副理事长;主要从事生物材料及心血管微创介入器械研究,近五年发表论文50余篇,获得授权国内外专利近百项,yunbing.wang@scu.edu.cn。
引用本文:    
杨立, 罗日方, 雷洋, 王云兵. 微创介入全降解血管支架和心脏瓣膜国内外研发现状与研究前沿[J]. 材料导报, 2019, 33(1): 40-47.
YANG Li, LUO Rifang, LEI Yang, WANG Yunbing. Frontier Research and Development of Minimally Invasive and Interventional Fully Biodegradable Stent and Heart Valve. Materials Reports, 2019, 33(1): 40-47.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901004  或          http://www.mater-rep.com/CN/Y2019/V33/I1/40
1 Evaluate MedTech 2017.2 EP Vantage 2018.3 Rattier B,Hoffman A, et al. Amsterdam:Elsevier Academic Press,2004.4 Kleiner L, Wright J, Wang Y. Journal of Controlled Release,2014,181,1.5 Hideo T, Takafumi T, Eisho K, et al. Cardiology,1999,12,443.6 Venkatraman S, Tan L, Joso J, et al. Biomaterials,2006,27,1573.7 Grabow N, Martin D, Schmitz K, et al. Journal of Chemical Technology & Biotechnology,2009,85,744.8 Xue L, Dai S, Li Z. Biomaterials,2010,31,8132.9 Borinski M, Flege C, Schreiber F, et al. Journal of Biomedical Materials Research Part B-Applied Biomaterials,2012,100B,2023.10 Bruining N, De Winter S, Roelandt J, et al. JACC-Cardiovascular Interventions,2010,3,449.11 Buenger C, Grabow N, Sternberg K, et al. Journal of Surgical Research,2007,139,77.12 Wang Y, Zhang X. Regenerative Biomaterials,2014,1,49.13 Zheng Y F, Liu B, Gu X N. Materials Review A:Review Papers,2009,23(1),1(in Chinese).郑玉锋,刘彬,顾雪楠.材料导报:综述篇,2009,23(1),1.14 Erne P, Schier M, Resink T. International Journal of Cardiology,1986,12,175.15 Heublein B, Tohde R, Kaese V, et al. Heart,2003,89,651.16 Di Mario C, Griffiths H, GoktekinO,et al. Journal of Interventional Cardiology,2004,17,391.17 Schultze J, Lohrengel M. Electrochim Acta,2000,45,2499.18 Gu X, Zheng Y, Lan Q, et al. Biomedical Materials,2009, 4,044109.19 Wang J, Li D, Yu X, et al. Journal of Alloys and Compounds,2010,494,271.20 Wittchow E, Adden N, Riedmueller J, et al. EuroIntervention,2013,8,1441.21 Peuster M, Hesse C, Schloo T, et al. Biomaterials,2006,27,4955.22 Lin W, Zhang D, Zhang G,et al. Materials & Design,2016,91,72.23 Zhao S, Seitz J M, Eifler R, et al. Materials Science and Engineering,2017,C76,301.24 DrelichA, Zhao S, Guillory R, et al. Acta Biomaterialia,2017,58,539.25 Teruo I, Kevin C, Toshifumi M, et al. JACC: Cardiovascular Interventions,2001,4,105.26 Kaiser C, Galatius S, Erne P, et al. New England Journal of Medicine,2010,363,2310.27 Bnaa K H, Mannsverk J, Wiseth R, et al. New England Journal of Medicine,2016,375,1242.28 Doyle B, Rihal C, O’Sullivan C, et al. Circulation,2007,116,2391.29 Otsuka F, Finn A, Yazdani S, et al. Nature Reviews Cardiology,2012,9,439.30 WeiY, Zhang J, Ji J, et al. Colloids and Surfaces B: Biointerfaces,2015,136,1166.31 Huang N, Yang P, Leng Y. Biomaterials,2003,24,217732 Luo R, Wang X, Deng J, et al. Colloids and Surfaces B: Biointerfaces,2016,144,90.33 Chen Z, Li Q, Chen J, et al. Materials Science and Engineering: C,2016,60,219.34 Wei Y, Ji Y, Ji J,et al. Biomaterials,2013,24,2588.35 Luo R, Zhang J, Zhuang W, et al. Journal of Materials Chemistry B,2018,6,5582.36 Yang Z, Yang Y, Wang J, et al. Biomaterials,2015,63,80.37 McCarthy J. Advanced Drug Delivery Reviews,2010,62,1023.38 Lin Q, Ding X, Qiu F, et al. Biomaterials,2010,31,4017.39 Nakazawa G, Granada J, Alviar C, et al. JACC: Cardiovascular Interventions,2010,3,68.40 Klomp M, Beijk M, Varma C, et al. JACC: Cardiovascular Interventions,2011,4,896.41 Joner M, Finn AV, Farb A, et al. Journal of the American College of Cardiology,2006,48,193.42 Chaabane C, Otsuka F, Virmani R, et al. Cardiovasc Research,2013,99,353. 43 Zheng W, Wang Z, Song L, et al. Biomaterials,2012,33,2880.44 Wang Y, Li L, Zhao W, et al. ACS Nano,2018,12,8943.45 Sharif F, Hynes S, McCullagh K, et al. Gene Therapy,2012,19,321.46 Fishbein I, Chorny M, Adamo R, et al. Angiol Open Access,2013,1,109.47 Cooney R, Hynes S, Sharif F, et al. Gene Therapy,2007,14,396.48 Che H L, Bae I H, Lim K S, et al. Biomaterials,2012,33,8548.49 Adipurnama I, Yang M, Ciach T, et al. Biomaterials Science,2017,5,22.50 Park S N, et al. Biomaterials,2002,23,1205.51 马兵,翟万银,常江.生物医学工程学进展,2012(33),232.52 Sung H W, et al. Journal of Biomedical Materials Research,1999,47,116.53 Guo G, Wang Y, et al. Acta Biomaterials,2018,82,44.54 Lei Y, Wang Y, et al. Journal of Biomedical Materials Research,2018.55 Grabenwöger M, et al. Journal of Biomedical Materials Research,1992,26,1231.56 Mirsadraee S, et al. Journal of Surgical Research,2007,143,407.57 Vyavahare N, et al. Circulation,1997,95,479.58 Hirsch D, et al. Journal of Biomedical Materials Research,1993,27,1477.59 Trantina-Yates A, et al. Biomaterials,2001,22,1837.60 Wang J Y, et al. Journal of Tongji University (Medical Science),2015,26(5),1.汪进益,等.同济大学学报医学版,2008,26(5),1.61 Bailey M, et al. American Journal of Pathology,2001,159,1981.62 Isenburg J, Simionescu D, Vyavahare N. Biomaterials,2004,25(16),3293.63 Tam H, et al. Biomaterials,2015,66,83.64 Wang X, et al. Acta Biomaterials,2015,16,81.65 Hornebeck W, et al. Seminars in Cancer Biology,2002,12,231.66 Jin W, Wang Y, et al. Artif Organs,2018,42,1062.67 Lei Y, Xia Y, Wang Y. Journal of Biomaterials Application,2018,33,637.68 Jorge-Herrero E, et al. Biomaterials,1991,12,683.69 Ohri R, et al. Journal of Biomedical Materials Research Part A,2004,70,328.70 Stassen O M J A, et al.Current Treatment Options in Cardiovasc Medicine,2017,19,71.71 Aly N, Li S, Davis M E. Advanced Healthcare Materials,2017,6,1700918.72 Bezuidenhout D,et al. Biomaterials,2015,36,6.73 Ghanbari H, et al.Trends in Biotechnology,2009,27,359.74 王云兵,等.中国专利,CN201710108203.6,2017.75 Dhoble A, et al. Catheterization & Cardiovascular Interventions,2017,89,462.76 Grzegorz S, Piotr P, Marek J. Catheterization & Cardiovascular Interventions,2013,82,E119.77 Kiefer P, et al. Annals of Thoracic Surgery,2011,92,155.78 Khoffi F,Heim F. Journal of the Mechanical Behavior of Biomedical Materials,2015,44,71.79 Feng Y, et al. European Heart Journal,2018,39,1028.80 Lei Y, Wang Y, et al. Journal of Materials Research,2018,1,10.
[1] 崔凯, 虞澜, 刘安安, 秦梦, 宋世金, 沈艳. 具有c轴择优的CuCr1-xMgxO2多晶的热电输运性质及Mg掺杂效应[J]. 材料导报, 2019, 33(20): 3363-3366.
[2] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376.
[3] 范海波, 任启芳, 余淼, 王苏蕾, 曹镜宇, 金震, 丁益. 磷酸银/类石墨氮化碳-硅藻土复合材料的制备及可见光催化性能[J]. 材料导报, 2019, 33(20): 3383-3389.
[4] 杨小波, 吕毅, 王华栋, 张冰清, 应国兵. 尖晶石固化磷酸铝基复合材料的制备与性能[J]. 材料导报, 2019, 33(18): 3012-3015.
[5] 李华鑫, 陈俊勇, 乐弦, 向军辉. Al2O3-SiO2复合气凝胶的制备与表征[J]. 材料导报, 2019, 33(18): 3170-3174.
[6] 肖学峰,徐家跃,韦海成,张欢,张学锋. 硅酸铋——一种快计时重闪烁新型多功能晶体材料[J]. 材料导报, 2019, 33(15): 2505-2512.
[7] 肖治国, 成岳, 唐伟博, 余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[8] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[9] 恭飞, 吴张永, 朱启晨, 张莲芝, 郭翠霞, 王雪婷. NiFe2O4磁流体润滑性实验研究[J]. 材料导报, 2019, 33(z1): 126-131.
[10] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[11] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[12] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[13] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[14] 孙健武, 葛美英, 尹桂林, 张芳, 何丹农. 介晶半导体材料的合成及应用研究进展[J]. 材料导报, 2019, 33(7): 1119-1124.
[15] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed