Please wait a minute...
材料导报  2019, Vol. 33 Issue (20): 3363-3366    https://doi.org/10.11896/cldb.18080134
  无机非金属及其复合材料 |
具有c轴择优的CuCr1-xMgxO2多晶的热电输运性质及Mg掺杂效应
崔凯1, 虞澜1, 刘安安1, 秦梦1,2, 宋世金1, 沈艳1
1 昆明理工大学材料科学与工程学院,昆明 650093
2 中国科学院上海硅酸盐研究所,上海 200050
Thermoelectric Transport Properties and Mg Doping Effect of CuCr1-xMgxO2Polycrystals with c-Axis Orientation
CUI Kai1, YU Lan1, LIU Anan1, QIN Meng1,2, SONG Shijin1, SHEN Yan1
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2 Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050
下载:  全 文 ( PDF ) ( 2480KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用固相反应法制备了c轴择优的CuCr1-xMgxO2(0≤x≤0.08)系列多晶,通过X射线衍射、扫描电镜和电阻率-温度曲线、Seebeck系数-温度曲线对样品的结构、热电输运和固溶度进行表征研究。随Mg掺杂量在x=0~0.03范围内增加,多晶为铜铁矿单相结构,层状晶粒在ab面显著长大,(00l)取向因子最大达0.53,晶界和孔隙显著减少,致密度依次提高;多晶呈热激活机制的半导体电输运行为,热激活能从0.273 eV下降到0.031 eV,室温电导率相应提高了3~4个数量级,高温下Seebeck系数从481.2 μV·K-1减小到334.7 μV·K-1。由于声子曳引的贡献,随温度升高,掺Mg样品的Seebeck系数增大。x>0.03后,样品的热电输运性质基本保持不变,微观结构变化不大,在晶界处观察到MgCr2O4八面体尖晶石第二相,分析认为Mg掺杂的最大固溶度约为0.03。随Mg2+替代Cr3+的增加,在靠近价带顶的上方引入受主能级并展宽,使电输运的热激活能显著下降,空穴载流子浓度增大;同时c轴择优取向使面内的输运分量增加,这都是电导率提高的主要原因,而载流子迁移率浮动是电导率提高的次要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔凯
虞澜
刘安安
秦梦
宋世金
沈艳
关键词:  CuCr1-xMgxO2多晶  固溶度  电导率  热激活能  Seebeck系数    
Abstract: CuCr1-xMgxO2(0≤x≤0.08) polycrystalline samples with c-axis orientation were prepared by solid-state reaction. The microstructure and thermoelectric transport properties of the samples were characterized by X-ray diffraction, scanning electron microscopy, resistivity-temperature and Seebeck coefficient-temperature curves. In the single-phase delafossite structure with increasing Mg doping amount within x=0—0.03, the crystal grains grow significantly along the ab-plane and (00l) lotgering factor is up to 0.53, the grain boundary and pore decrease significantly, and the density increases successively. The polycrystalline samples exhibit semiconducting electrical transport behavior according with Arrhenius thermal activation mode. The activation energy decreases from 0.273 eV to 0.031 eV, and the conductivity increases by 3—4 orders of magnitude at room temperature, the Seebeck coefficient at high temperature decreases from 481.2 μV·K-1to 334.7 μV·K-1and increases with the increasing temperature which due to the contribution of phonon drag in the Mg-doped samples. After x>0.03, the thermoelectric transport remain basically unchanged, the polycrystalline microstructure changes little, and the MgCr2O4 octahedral spinel phase is observed at the grain boundary. In conclusion, the maximum solid solubility of Mg doping is 0.03. As Mg2+ replace the Cr3+ sites, they introduce an acceptor level and expanding near the top of the valence band, causing the thermal activation energy of the electrical transport drops significantly. The increased hole carrier concentration and the stronger c-axis orientation with more transport component in ab-plane are mainly account for the conductivity enhancement. The effect of carrier mobility is secondary.
Key words:  CuCr1-xMgxO2 polycrystals    solid solubility    conductivity    thermal activation energy    Seebeck coefficient
               出版日期:  2019-10-25      发布日期:  2019-08-29
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51462017;51262016)
作者简介:  崔凯,昆明理工大学,材料学硕士研究生,主要研究方向为光电子材料与器件。虞澜,昆明理工大学材料学院教授,博士研究生导师。2012年6月获得昆明理工大学与德国马普固体研究所联合培养的材料学专业博士学位。主要从事强关联体系和原子层热电堆特征氧化物、半导体热(光)电材料的多晶陶瓷和外延薄膜的制备表征、热电磁输运性质、横向热电效应,以及层状氧化物薄膜的输运各向异性等研究。在国内外学术期刊上发表论文50余篇,申请发明专利20项,其中授权7项。yulan000@hotmail.com
引用本文:    
崔凯, 虞澜, 刘安安, 秦梦, 宋世金, 沈艳. 具有c轴择优的CuCr1-xMgxO2多晶的热电输运性质及Mg掺杂效应[J]. 材料导报, 2019, 33(20): 3363-3366.
CUI Kai, YU Lan, LIU Anan, QIN Meng, SONG Shijin, SHEN Yan. Thermoelectric Transport Properties and Mg Doping Effect of CuCr1-xMgxO2Polycrystals with c-Axis Orientation. Materials Reports, 2019, 33(20): 3363-3366.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080134  或          http://www.mater-rep.com/CN/Y2019/V33/I20/3363
1 Fang Z J, Zhu J Z, Zhou J, et al. Chinese Physics B, 2012, 21(8), 1.2 Poienar M, Hardy V, Kundys B, et al. Journal of Solid State Chemistry, 2012, 185(5), 56.3 Huang H, Zhu C F, Liu W. Chinese Journal of Chemical Physics, 2004, 17(2), 162.4 Dong G B, Zhang M, Lan W, et al. The Chinese Journal of Nonferrous Metals, 2007, 17(9), 1471.5 Lee M S, Kim T Y, Kim D. Applied Physics Letters, 2001, 79(13), 2028.6 Zheng S Y, Jiang G S, Su J R, et al. Materials Letters, 2006, 60, 3871.7 Yasuhiro O, Kenichi S, Tomohiro N, et al. In: International Conference on Thermoelectrics. Japan, 2007, pp. 1071.8 Nagarajan R, Draeseke A D, Sleight A W, et al. Journal of Applied Physics, 2001, 89(12), 8022.9 Li Y C, Zhang M, Dong G B, et al. The Chinese Journal of Nonferrous Metals, 2010, 20(5), 898 (in Chinese).李杨超, 张铭, 董国波, 等.中国有色金属学报, 2010, 20(5), 898.10 Song X Y, Yang Y Z, Liu Y, et al. Electronic Components and Mate-rials, 2013, 32(8), 38 (in Chinese).宋晓英, 杨元政, 刘远, 等.电子元件与材料, 2013, 32(8), 38.11 Zhao F, Liu Y J, Li N, et al. Journal of Molecular Catalysis, 2001, 15(3), 161 (in Chinese).赵峰, 刘英骏, 李能, 等.分子催化, 2001, 15(3), 161.12 Maignan A, Martin C, Frésard R, et al. Solid State Communications, 2009, 149, 962.13 Guilmeau E, Poienar M, Kremer S, et al. Solid State Communications, 2011, 151, 1798.14 Morimura T, Yamaguchi T, Kojima T, et al. Journal of Electronic Mate-rials, 2014, 43(6), 1603.15 Song S J, Ni J, Yu L, et al. Journal of the Chinese Ceramic Society, 2015, 43(3), 286 (in Chinese).宋世金, 倪佳, 虞澜, 等.硅酸盐学报, 2015, 43(3), 286.16 Okuda T, Jufuku N, Hidaka S, et al. Physical Review B, 2005, 72(14), 1.17 Kurtz S K, Carpay F M A. Journal of Applied Physics, 1980, 51(11), 5725.18 Senda T, Bradf R. Journal of the American Chemical Society, 1990, 73(1), 106.19 Fan K. Preparation, photoelectric properties and LIV effect of CuCr1-x-MgxO2 with wide bandgap. Master’s Thesis, Kunming University of Science and Technology, China, 2016 (in Chinese).樊堃. 宽禁带CuCr1-xMgxO2材料的制备及光、电性能和LIV效应研究. 硕士学位论文, 昆明理工大学, 2016.20 Wang Y, Yu L, Wang J H, et al. Materials Letters, 2012, 75(3), 39.21 Feng X L, Xie L Y, Su J R. Materials Review, 2011, 25(S2), 338 (in Chinese).冯晓莉, 解林燕, 苏金瑞.材料导报, 2011, 25(专辑18), 338.22 Macdonald D K C. Thermoelectricity: An introduction to the principles, Wiley, America, 1962.23 Arnold T, Payne D J, Bourlange A, et al. Physical Review B, 2009, 79(7), 45.
[1] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[2] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[3] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[4] 劳一桂, 高运明, 王强, 李光强. 冶金离子熔体电导率测定技术进展[J]. 材料导报, 2019, 33(11): 1882-1888.
[5] 刘磊, 周海涛, 周楠, 农登, 王顺成. 时效温度和时间对新型Al-6Zn-1.1Mg合金组织性能的影响[J]. 材料导报, 2018, 32(24): 4292-4296.
[6] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[7] 王松林, 徐向棋, 陈子潘, 孟广耀. 掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料[J]. 材料导报, 2018, 32(16): 2728-2732.
[8] 何钦生, 邹兴政, 李方, 唐锐, 赵安中, 田世龙. Cu-Ag合金原位纤维复合材料研究现状[J]. 材料导报, 2018, 32(15): 2684-2692.
[9] 钱如胜,张云升,张宇,杨永敢. 水泥-粉煤灰体系早龄期液相离子浓度与电导率的关系[J]. 《材料导报》期刊社, 2018, 32(12): 2066-2071.
[10] 吴艳光,羿庄城,葛震,杜飞鹏,张云飞. 提高聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸电导率的最新研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 26-31.
[11] 刘元军, 刘国熠, 赵晓明. 滑石粉涂层复合材料的制备及其介电性能和电导率*[J]. 《材料导报》期刊社, 2017, 31(18): 28-32.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed