Abstract: Samples of SrFe0.9M0.1O3-δ(M=Zn, Ga, Sn, Nb, W) were synthesized via the solid-phase reaction. The crystal structure, EDS, chemical compatibility, conductivity and electrochemical properties as cathode materials for solid oxide fuel cell were also discussed. The XRD patterns reveal that perovskite structure of SrFeO3-δ is well stabilized by doping metal ions Zn2+, Ga3+, Sn4+, Nb5+ and W6+, and all the samples show a single perovskite structure. No any impurity peaks are observed in the XRD patterns. The EDS pattern shows that the synthesized samples have a good chemical uniformity. The facts show that the SrFe0.9M0.1O3-δ(M=Zn, Ga, Sn, Nb, W) cathode have a good chemical compatibility with LSGM electrolyte at temperatures below 950 ℃. With the increase of valence state of doped ions, the maximum conductivity values gradually reduce. The SrFeO3-δ cathodic polarization resistance of doping metal ions Zn2+, Ga3+, Sn4+, Nb5+ and W6+ is measured at 800 ℃, the polarization resistance of SrFe0.9Zn0.1O3-δ sample is the smallest. The maximum power density of single cells with SrFe0.9M0.1O3-δ(M=Zn, Ga, Sn, Nb, W) as cathode and LSGM as electrolyte decreases with the increase of valence state of doping ions at 800 ℃. The peak power density of SrFe0.9Zn0.1O3-δ sample reaches 593 mW·cm-2 at 800 ℃.
1 Niu Y, Zhou W, Sunarso J, et al. Journal of Materials Chemistry, 2010, 20, 9619. 2 Yoo J, Vema A, Wang S, et al. Journal of the Electrochemical Society, 2005, 152, A497. 3 Zaspalis V, Evdou A, Nalbandian L. Fuel, 2010, 89, 1265. 4 Hodges J P, Short S, Yorgensen J D, et al. Journal of Solid State Che-mistry, 2000, 151, 190. 5 Savinskaya O A, Nemudry A P, Lyakhov N Z. Inorganic Materials, 2007, 43, 1350. 6 Kharton V V, Viskup A P, Kovlevsky A V, et al. Solid State Ionics, 2000, 133, 57. 7 Waerenborgh J C, Rojas D P, Shaula A L, et al. Materials Letters, 2005, 59, 1644. 8 Patrakeev M V, Kharton V V, Bakhteeva Y A, et al. Solid State Sciences, 2006, 8, 476. 9 Patrakeev M V, Markov A A, Leonidov I A, et al. Solid State Ionics, 2006, 177, 1757. 10 Anikina P V, Markov A A, Patakeev M V, et al. Solid State Sciences, 2009, 11, 1156. 11 Jiang S, Zhou W, Niu Y, et al. ChemSusChem, 2012, 5, 2023. 12 Xiao G L, Liu Q, Wang S W,et al. Journal of Power Sources, 2012, 202, 63. 13 Markov A A, Leonidov I A, Patrakeev M V, et al. Solid State Ionics, 2008, 179, 1050. 14 Zhou Q J, Zhang L L, He T M. Electrochemistry Communications, 2010, 12, 285. 15 Niu Y, Sunarso J, Liang F, et al. Journal of the Electrochemical Society, 2011, 158, B132. 16 Yu X L, Log W, He T M, et al. Electrochimica Acta, 2014, 123, 426. 17 Li Q, Xia T, Sun L P, et al. Electrochimica Acta, 2014, 150, 151. 18 Santos-Gómez L dos, Compana J M, Bruque S, et al. Journal of Power Sources, 2015, 279, 419. 19 Alice G, Clément N, Sébastien F, et al. Electrochimica Acta, 2017, 236, 328. 20 Anikina P V, Mmarkov A A, Patrakeev M V, et al. Russian Journal of Physical Chemistry A, 2009, 83, 699. 21 Buscaglia M T, Buscaglia V, Viviani M, et al. Journal of the European Ceramic Society, 2000, 20, 1997. 22 Hagemann H J, Hennings D. Journal of the American Ceramic Society, 1981, 64(10), 590. 23 Kaus I, Anderson H U. Solid State Ionics, 2000, 129, 189. 24 Shaula A L, Kharton V V, Patrakeev M V, et al. Ionics, 2004, 10, 378. 25 Xiang J, Guo Y T, Chu Y Q, et al. Acta Physica Sinica, 2011, 60(2), 27203(in Chinese). 向军, 郭银涛, 褚艳秋, 等. 物理学报, 2011, 60(2), 27203. 26 Leng Y J, Chan S H, Khor K A, et al. International Journal of Hydrogen Energy, 2004, 29, 1025. 27 Baek S W, Kim J H, Bae J. Solid State Ionics, 2008, 179, 1570. 28 Ding X F, Gao L, Du X J, et al. Rare Metal Materials and Engineering, 2007, 36(S2), 602(in Chinese). 丁锡锋, 高凌, 杜雪娟, 等. 稀有金属材料与工程, 2007, 36(S2), 602.