Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2305-2310    https://doi.org/10.11896/cldb.18050244
  无机非金属及其复合材料 |
掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能
于秀玲, 梁雪梅, 李雪
吉林农业大学信息技术学院, 长春 130118
Electrochemical Properties of SrFeO3-δ Perovskite Type Oxides Doped with Different Valence of Ion
YU Xiuling, LIANG Xuemei, LI Xue
College of Information Technology, Jilin Agricultural University, Changchun 130118
下载:  全 文 ( PDF ) ( 2145KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用固相法制备SrFe0.9M0.1O3-δ(M=Zn、Ga、Sn、 Nb、 W)系列钙钛矿氧化物,并讨论了晶体结构、EDS、化学兼容性、电导率以及作为固体氧化物燃料电池(SOFC)阴极材料的电化学性能。XRD结果显示,掺杂金属离子Zn2+、Ga3+、Sn4+、Nb5+和W6+ 很好地稳定了SrFeO3-δ钙钛矿的结构,并且所有样品均呈现单一钙钛矿结构,没有产生明显的杂相。EDS图谱显示合成的样品具有很好的化学均匀性。在950 ℃以下SrFe0.9M0.1-O3-δ(M=Zn、 Ga、 Sn、 Nb、W)阴极与LSGM电解质材料都具有良好的化学相容性。随着掺杂离子的价态升高,样品的电导率最大值逐渐降低。在800 ℃下测量掺杂金属离子Zn2+、Ga3+、Sn4+、Nb5+和W6+ 的SrFeO3-δ阴极的极化电阻,得出SrFe0.9Zn0.1O3-δ样品的极化电阻值最小的结果。以SrFe0.9M0.1O3-δ(M=Zn、Ga、Sn、Nb、W)作为阴极、LSGM为电解质的单电池在800 ℃时的最大功率密度随着掺杂离子价态的升高而下降,掺杂Zn的样品的功率密度最大值达到了593 mW·cm-2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于秀玲
梁雪梅
李雪
关键词:  固体氧化物燃料电池  钙钛矿氧化物  电导率  阴极  极化电阻    
Abstract: Samples of SrFe0.9M0.1O3-δ(M=Zn, Ga, Sn, Nb, W) were synthesized via the solid-phase reaction. The crystal structure, EDS, chemical compatibility, conductivity and electrochemical properties as cathode materials for solid oxide fuel cell were also discussed. The XRD patterns reveal that perovskite structure of SrFeO3-δ is well stabilized by doping metal ions Zn2+, Ga3+, Sn4+, Nb5+ and W6+, and all the samples show a single perovskite structure. No any impurity peaks are observed in the XRD patterns. The EDS pattern shows that the synthesized samples have a good chemical uniformity. The facts show that the SrFe0.9M0.1O3-δ(M=Zn, Ga, Sn, Nb, W) cathode have a good chemical compatibility with LSGM electrolyte at temperatures below 950 ℃. With the increase of valence state of doped ions, the maximum conductivity values gradually reduce. The SrFeO3-δ cathodic polarization resistance of doping metal ions Zn2+, Ga3+, Sn4+, Nb5+ and W6+ is measured at 800 ℃, the polarization resistance of SrFe0.9Zn0.1O3-δ sample is the smallest. The maximum power density of single cells with SrFe0.9M0.1O3-δ(M=Zn, Ga, Sn, Nb, W) as cathode and LSGM as electrolyte decreases with the increase of valence state of doping ions at 800 ℃. The peak power density of SrFe0.9Zn0.1O3-δ sample reaches 593 mW·cm-2 at 800 ℃.
Key words:  solid oxide fuel cell    perovskite oxide    electrical conductivity    cathode    polarization resistances
                    发布日期:  2019-06-19
ZTFLH:  TM911  
基金资助: 吉林省教育厅科学技术研究项目(2016167)
通讯作者:  syxling@126.com   
作者简介:  于秀玲,吉林农业大学副教授。2005年7月毕业于沈阳师范大学,获得理学硕士学位,2014年6月在吉林大学凝聚态物理专业取得博士学位。主要从事中温固体氧化物燃料电池阴极材料研究,柔性超级电容器的制备与应用研究。在国内外重要期刊发表文章10多篇。
引用本文:    
于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
YU Xiuling, LIANG Xuemei, LI Xue. Electrochemical Properties of SrFeO3-δ Perovskite Type Oxides Doped with Different Valence of Ion. Materials Reports, 2019, 33(14): 2305-2310.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050244  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2305
1 Niu Y, Zhou W, Sunarso J, et al. Journal of Materials Chemistry, 2010, 20, 9619.
2 Yoo J, Vema A, Wang S, et al. Journal of the Electrochemical Society, 2005, 152, A497.
3 Zaspalis V, Evdou A, Nalbandian L. Fuel, 2010, 89, 1265.
4 Hodges J P, Short S, Yorgensen J D, et al. Journal of Solid State Che-mistry, 2000, 151, 190.
5 Savinskaya O A, Nemudry A P, Lyakhov N Z. Inorganic Materials, 2007, 43, 1350.
6 Kharton V V, Viskup A P, Kovlevsky A V, et al. Solid State Ionics, 2000, 133, 57.
7 Waerenborgh J C, Rojas D P, Shaula A L, et al. Materials Letters, 2005, 59, 1644.
8 Patrakeev M V, Kharton V V, Bakhteeva Y A, et al. Solid State Sciences, 2006, 8, 476.
9 Patrakeev M V, Markov A A, Leonidov I A, et al. Solid State Ionics, 2006, 177, 1757.
10 Anikina P V, Markov A A, Patakeev M V, et al. Solid State Sciences, 2009, 11, 1156.
11 Jiang S, Zhou W, Niu Y, et al. ChemSusChem, 2012, 5, 2023.
12 Xiao G L, Liu Q, Wang S W,et al. Journal of Power Sources, 2012, 202, 63.
13 Markov A A, Leonidov I A, Patrakeev M V, et al. Solid State Ionics, 2008, 179, 1050.
14 Zhou Q J, Zhang L L, He T M. Electrochemistry Communications, 2010, 12, 285.
15 Niu Y, Sunarso J, Liang F, et al. Journal of the Electrochemical Society, 2011, 158, B132.
16 Yu X L, Log W, He T M, et al. Electrochimica Acta, 2014, 123, 426.
17 Li Q, Xia T, Sun L P, et al. Electrochimica Acta, 2014, 150, 151.
18 Santos-Gómez L dos, Compana J M, Bruque S, et al. Journal of Power Sources, 2015, 279, 419.
19 Alice G, Clément N, Sébastien F, et al. Electrochimica Acta, 2017, 236, 328.
20 Anikina P V, Mmarkov A A, Patrakeev M V, et al. Russian Journal of Physical Chemistry A, 2009, 83, 699.
21 Buscaglia M T, Buscaglia V, Viviani M, et al. Journal of the European Ceramic Society, 2000, 20, 1997.
22 Hagemann H J, Hennings D. Journal of the American Ceramic Society, 1981, 64(10), 590.
23 Kaus I, Anderson H U. Solid State Ionics, 2000, 129, 189.
24 Shaula A L, Kharton V V, Patrakeev M V, et al. Ionics, 2004, 10, 378.
25 Xiang J, Guo Y T, Chu Y Q, et al. Acta Physica Sinica, 2011, 60(2), 27203(in Chinese).
向军, 郭银涛, 褚艳秋, 等. 物理学报, 2011, 60(2), 27203.
26 Leng Y J, Chan S H, Khor K A, et al. International Journal of Hydrogen Energy, 2004, 29, 1025.
27 Baek S W, Kim J H, Bae J. Solid State Ionics, 2008, 179, 1570.
28 Ding X F, Gao L, Du X J, et al. Rare Metal Materials and Engineering, 2007, 36(S2), 602(in Chinese).
丁锡锋, 高凌, 杜雪娟, 等. 稀有金属材料与工程, 2007, 36(S2), 602.
[1] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[2] 王旭, 廖春发, 王瑞祥, 孙强超. 氟化物介质熔盐电解制备Ni-Yb合金及其表征[J]. 材料导报, 2019, 33(5): 750-753.
[3] 吴晓燕, 谭维, 罗才武, 张晓文, 李密, 房琦, 谭文发. 以MnFe2O4为阻挡层的Ni-YSZ阳极支撑SOFC的效能[J]. 材料导报, 2019, 33(12): 1949-1954.
[4] 达波, 余红发, 麻海燕, 吴彰钰. 全珊瑚海水混凝土中不同种类钢筋的防腐蚀性能[J]. 材料导报, 2019, 33(12): 2002-2008.
[5] 劳一桂, 高运明, 王强, 李光强. 冶金离子熔体电导率测定技术进展[J]. 材料导报, 2019, 33(11): 1882-1888.
[6] 陈雷行, 苏金瑞, 何豪, 张宗镇, 蔡彬. 质子导体固体氧化物燃料电池的PrBa0.5Sr0.5Cu2O6-δ复合阴极材料[J]. 材料导报, 2019, 33(10): 1615-1618.
[7] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
[8] 周嵬, 王习习, 朱印龙, 戴洁, 朱艳萍, 邵宗平. 面向金属-空气电池和中低温固体氧化物燃料电池应用的钴基电催化剂综述[J]. 材料导报, 2018, 32(3): 337-356.
[9] 刘磊, 周海涛, 周楠, 农登, 王顺成. 时效温度和时间对新型Al-6Zn-1.1Mg合金组织性能的影响[J]. 材料导报, 2018, 32(24): 4292-4296.
[10] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[11] 王松林, 徐向棋, 陈子潘, 孟广耀. 掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料[J]. 材料导报, 2018, 32(16): 2728-2732.
[12] 何钦生, 邹兴政, 李方, 唐锐, 赵安中, 田世龙. Cu-Ag合金原位纤维复合材料研究现状[J]. 材料导报, 2018, 32(15): 2684-2692.
[13] 周丹, 秦元成, 徐海涛, 李明俊. 有机太阳能电池阴极界面层概述[J]. 材料导报, 2018, 32(13): 2143-2150.
[14] 钱如胜,张云升,张宇,杨永敢. 水泥-粉煤灰体系早龄期液相离子浓度与电导率的关系[J]. 《材料导报》期刊社, 2018, 32(12): 2066-2071.
[15] 吴艳光,羿庄城,葛震,杜飞鹏,张云飞. 提高聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸电导率的最新研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 26-31.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed