Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 750-753    https://doi.org/10.11896/cldb.201905004
  材料与可持续发展(二)——材料绿色制造与加工* |
氟化物介质熔盐电解制备Ni-Yb合金及其表征
王旭, 廖春发, 王瑞祥, 孙强超
江西理工大学冶金与化学工程学院,赣州 341000
Characterization and Preparation of Ni-Yb Alloy by Molten Salt Electrolysis in Fluoride Melt
WANG Xu, LIAO Chunfa, WANG Ruixiang, SUN Qiangcao
School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
下载:  全 文 ( PDF ) ( 1620KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用LiF-CaF2介质和Yb2O3原料的氟盐-氧化物体系电解制得了Ni-Yb合金。通过循环伏安法分析了Yb(Ⅲ)离子的电化学行为,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)及能谱仪(EDS)表征并分析了电解产物的成分及物相组成。结果表明,在LiF-CaF2(n(LiF)∶n(CaF2)=77∶23)的体系中,温度为1 523 K,槽电压4.0 V,以金属Ni为自耗阴极,经3 h电解能成功制备出Ni-Yb合金。Yb(Ⅲ)离子的还原分两步进行,首先Yb(Ⅲ)得到一个电子,被还原为Yb(Ⅱ)离子,随后Yb(Ⅱ)离子在Ni阴极表面继续被还原为Yb并被合金化,最终形成基本组成相为Ni、Ni5Yb、Ni17Yb2的合金。充分说明在活性较高的Ni电极表面能够通过去极化作用使Yb(Ⅱ)离子还原电位右移,突破了变价稀土元素Yb(Ⅱ)离子无法在氟盐介质中的惰性电极表面被还原为Yb的限制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王旭
廖春发
王瑞祥
孙强超
关键词:  熔盐电解  Ni-Yb合金  LiF-CaF2介质  自耗阴极  循环伏安    
Abstract: Ni-Yb alloy was prepared by electrolysis of fluorine salt-oxide system with LiF-CaF2 as medium and Yb2O3 as raw material. Cyclic voltammetry was adopted to analyze the electrochemical behavior of Yb (Ⅲ) ions, and X-ray diffraction, scanning electron microscope and energy dispersive spectroscope were employed to characterize the components and phase composition of the Ni-Yb alloys. It can be found from the results that the Ni-Yb alloy was successfully prepared by 3 hours’ electrolysis in the LiF-CaF2-Yb2O3 (n(LiF)∶n(CaF2)=77∶23) eutectic system with self-consumed Ni as cathode at a temperature of 1 523 K and cell voltage of 4.0 V. The implementation of Yb (Ⅲ) reduction includes two steps. Firstly, Yb (Ⅲ) obtained an electron, and was reduced to Yb (Ⅱ). Secondly, the Yb (Ⅱ) ion was reduced to Yb on the surface of Ni cathode. Consequently, the Ni-Yb alloy composed of basic phase Ni, Ni5Yb, Ni17Yb2 was formed through electrochemical reduction and alloyed process. It is fully demonstrated that the depolarization on active nickel electrode will lead to a positive shift of reduction potential of Yb (Ⅱ), which breaks through the limitation that the variable valence rare earth Yb (Ⅱ) ion can not be reduced to Yb on the surface of the inert electrode in fluorine salt medium.
Key words:  molten salt electrolysis    Ni-Yb alloy    LiF-CaF2 medium    self-consumed cathode    cyclic voltammetry
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TF813  
基金资助: 国家自然科学基金(51564015);江西省自然科学基金(20161BAB206142)
作者简介:  王旭,2009年1月毕业于东北大学,获得冶金物理化学博士学位。现为江西理工大学冶金与化学工程学院副教授。目前主要研究领域为熔盐电化学冶金。837362916@qq.com
引用本文:    
王旭, 廖春发, 王瑞祥, 孙强超. 氟化物介质熔盐电解制备Ni-Yb合金及其表征[J]. 材料导报, 2019, 33(5): 750-753.
WANG Xu, LIAO Chunfa, WANG Ruixiang, SUN Qiangcao. Characterization and Preparation of Ni-Yb Alloy by Molten Salt Electrolysis in Fluoride Melt. Materials Reports, 2019, 33(5): 750-753.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905004  或          http://www.mater-rep.com/CN/Y2019/V33/I5/750
1 Tuan N Q, Alves A C, Toptan F, et al. Materials and Corrosion,2015,66(12),1504.
2 Zhang Shuo, Yang Cuicui, Zu Shiqi, et al. Hot Working Technology,2014,43(15),6(in Chinese).
张烁,杨翠翠,俎世琦,等.热加工工艺,2014,43(15),6.
3 Jia K, Yu W B, Yao J M, et al. Rare Metals,2017,36,95.
4 Liu Xingjun, Zhang Hongling, Wang Shuliang, et al. The Chinese Journal of Nonferrous Metals,2011,21(4):865(in Chinese).
刘兴军,张红玲,王书亮,等.中国有色金属学报,2011,21(4),865.
5 Tang C L, Zhou D J. Transactions of Nonferrous Metals Society of China,2014,7(24),2326.
6 Hodges J A, Bonville P, Ocio M. The European Physical Journal B,2007,57,365.
7 Wu W Y.Rare earth metallurgy, Chemical Industry Press,China,2005(in Chinese).
吴文远.稀土冶金学,化学工业出版社,2005.
8 Ota K I, Kreysa G, Savinell R F.Encyclopedia of applied electrochemistry, Springer Berlin,GER,2014.
9 Smolenski V, Novoselova A, Osipenko A, et al. Journal of Electroanaly-tical Chemistry,2009,633,291.
10 Novoselova A V, Smolenskii V V. Radiochemistry,2013,55(3),243.
11 Yamagata Masaki, Katayama Yasushi, Miura Takashi. Journal of the Electrochemical Society,2006,153(1),E5.
12 Gibilaro M, Bolmont S, Massot L, et al. Journal of Electroanalytical Chemistry,2014,726,84.
13 Bard A J, Faulkner L R. Russian Journal of Electrochemistry,2002,38(12),156.
14 Ye D L.Practical inorganic thermodynamics data manual, Metallurgical Industry Press,China,2002(in Chinese).
叶大伦.实用无机热力学数据手册,冶金工业出版社,2002.
15 Wang Xu, Liao Chunfa, Jiao Yunfen, et al. Materials Review B:Research Papers,2017,31(11),50(in Chinese).
王旭,廖春发,焦芸芬,等.材料导报:研究篇,2017,31(11),50.
16 Iida Takahisa, Nohira Toshiyuki, Ito Yasuhiko. Electrochimica Acta,2003,48(10),1531.
[1] 李亮星, 王涛胜, 黄茜琳, 黄金堤. 熔盐电解法制备铝钪中间合金研究进展[J]. 材料导报, 2018, 32(21): 3768-3773.
[2] 王炯, 徐瑞东, 于伯浩, 韩莎, 何世伟, 陈步明. PbO2-MnO2共沉积电化学行为研究*[J]. 《材料导报》期刊社, 2017, 31(8): 35-40.
[3] 张显峰, 赵朝成, 王德军, 赵媛媛, 张勇, 郭锐. 基于SnO2/Fe3O4粒子电极的三维电极体系的电催化性能*[J]. 《材料导报》期刊社, 2017, 31(8): 25-30.
[4] 王旭,廖春发,焦芸芬,汤浩. 氟盐-氧化物体系电解制备Al-Cu-Y合金的电极还原过程研究*[J]. 材料导报编辑部, 2017, 31(22): 50-54.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed