Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 25-30    https://doi.org/10.11896/j.issn.1005-023X.2017.08.006
  材料研究 |
基于SnO2/Fe3O4粒子电极的三维电极体系的电催化性能*
张显峰, 赵朝成, 王德军, 赵媛媛, 张勇, 郭锐
中国石油大学华东化学工程学院, 青岛 266580
Electrocatalytic Performance of Three-dimensional Electrode System with SnO2/Fe3O4 Particle Electrode
ZHANG Xianfeng, ZHAO Chaocheng, WANG Dejun, ZHAO Yuanyuan, ZHANG Yong, GUO Rui
College of Chemical Engineering,China University of Petroleum East China, Qingdao 266580
下载:  全 文 ( PDF ) ( 1602KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过水热法合成复合金属氧化物SnO2/Fe3O4粒子电极,然后采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、磁滞回线等技术分别对粒子电极的晶体组分、形貌、元素组成和分子结构以及粒子电极的磁性特征进行表征。采用循环伏安法分析了三维电极系统的电化学性能,并进行了电催化氧化降解罗丹明B(RhB)的实验。结果表明,SnO2/Fe3O4 粒子电极负载稳定、导电性强、便于回收再利用,有利于电催化氧化降解反应。三维电极降解罗丹明B的析氧电流高于其他电极体系,电催化活性效果明显,90 min内罗丹明B的降解率为100%、TOC去除率为83%,反应中产生的·OH是降解有机物的主要活性基。粒子电极在重复利用5次的情况下,对罗丹明B的降解率仍保持93%以上、TOC去除率保持在77%以上,具有稳定的电催化性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张显峰
赵朝成
王德军
赵媛媛
张勇
郭锐
关键词:  SnO2/Fe3O4粒子电极  循环伏安曲线  电催化降解  反应机理  稳定性    
Abstract: SnO2/Fe3O4 particle electrodes with good magnetic properties were prepared by a hydrothermal method. The morphology, crystal phase composition and magnetic properties of the electrodes were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and hysteresis testing, respectively. The electrocatalytic property was investigated by cyclic voltammetry, and the electrochemical degradation of artificial Rhodamine B (RhB) waste water was conducted in a multi-electrode reactor. Results showed that the catalytic layer of the as-prepared particle electrode had stable load and good conduction, and was easy to recycle and reuse, which benefit the electrocatalytic reaction. The multi-electrode system was far better at degrading RhB than a two-dimensional electrode system, as the former′s removal rate of RhB and total organic carbon (TOC) were 100% and 83%, respectively. In the reaction,·OH is the main active radical for the degradation of organic compounds. Moreover, the removal rate of RhB and total organic carbon (TOC) maintained above 93% and 77%, respectively, after the particle electrode were reused 5 times, exhibiting an excellent and stable electrocatalytic performance.
Key words:  SnO2/Fe3O4 particle electrode    cyclic voltammetry curve    electrocatalytic degradation    reaction mechanism    stability
出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  O646  
基金资助: 国家科技重大专项项目(2016ZX05040003)
通讯作者:  赵朝成:男,1963年生,教授,博士研究生导师,主要研究三废治理及资源化、环境影响评价 Tel:0532-86981719 E-mail:zhaochch@upc.edu.cn   
作者简介:  张显峰:男,1990年生,硕士研究生,主要研究光催化及电催化材料应用 E-mail:1217064562@qq.com
引用本文:    
张显峰, 赵朝成, 王德军, 赵媛媛, 张勇, 郭锐. 基于SnO2/Fe3O4粒子电极的三维电极体系的电催化性能*[J]. 《材料导报》期刊社, 2017, 31(8): 25-30.
ZHANG Xianfeng, ZHAO Chaocheng, WANG Dejun, ZHAO Yuanyuan, ZHANG Yong, GUO Rui. Electrocatalytic Performance of Three-dimensional Electrode System with SnO2/Fe3O4 Particle Electrode. Materials Reports, 2017, 31(8): 25-30.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.006  或          https://www.mater-rep.com/CN/Y2017/V31/I8/25
1 Jain R, Mathur M, Sikarwar S, et al. Removal of the hazardous dye rhodamine through photocatalytic and adsorption treatments[J].Environ Manage,2007,85(4):956.
2 Kuo W G. Decolorizing dye wastewater with Fenton′s reagent[J].Water Res,1992,26(7):881.
3 Vlyssides A G, Loizidou M, Karlis P K, et al. Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode[J].J Ha-zard Mater,1999,70(1):41.
4 Fockedey E, Van Lierde A. Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes[J]. Water Res,2002,36(16):4169.
5 Xiong Y A, Strunk P J, Xia H, et al. Treatment of dye wastewater containing acid orange Ⅱ using a cell with three-phase three-dimensional electrode[J]. Water Res,2001,35(17):4226.
6 Kai H, Ishibashi Y, Mori T, et al. Decolorization and estrogenic activity of colored livestock wastewater after electrolysis treatment[J]. J Mater Cycles Waste Manage,2010,12(2):128.
7 Jiang Bo, Zheng Jingtang, Qiu Shi, et al. Review on electrical discharge plasma technology for wastewater remediation[J]. Chem Eng J,2014,236:348.
8 Zhang Chao, Jiang Yonghai,Li Yunlin, et al. Three-dimensional electrochemical process for wastewater treatment: A general review[J]. Chem Eng J,2013,228:455.
9 Qin Yinghua, Sun Meng, Liu Huijuan, et al. AuPd/Fe3O4-based three-dimensional electrochemical system for efficiently catalytic degradation of 1-butyl-3-methylimidazolium hexafluorophosphate[J]. Electrochim Acta,2015,186:328.
10 Xuan S, Hao L, Jiang W, et al. A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites[J]. Nanotechnology,2007,18(3):035602.
11 Wang Z, Xiao P, He N. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction[J]. Carbon,2006,44(15):3277.
12 Lei Y, Chen C S, Tu Y J, et al. Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: Mechanism, stability, and effects of pH and bicarbonate ions[J]. Environ Sci Technol,2015,49(11):6838.
13 Xu L, Wang J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol[J]. EnvironL Sci Technol,2012,46(18):10145.
14 Ai Z, Xiao H, Mei T, et al. Electro-Fenton degradation of rhodamine B based on a composite cathode of Cu2O nanocubes and carbon nanotubes[J]. Phys Chem C,2008,112(31):11929.
15 Liu W, Ai Z, Zhang L. Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment[J]. J Hazard Mater,2012,243:257.
16 Rees N V, Zhou Yi-Ge, Compton R G. Making contact: Charge transfer during particle-electrode collisions[J]. Rsc Adv,2012,2(2):379.
17 Martinez-Huitle C A, Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes[J]. Chem Soc Rev,2006,35(12):1324.
18 Zhang Jiaming, Ma Chunyuan, Sun Youmin, et al. Hydroxyl radical reactions with 2-chlorophenol as a model for oxidation in supercritical water[J]. Res Chem Intermed,2014,40(3):973.
19 Luo M, Yuan S, Tong M, et al. An integrated catalyst of Pd supported on magnetic Fe3O4 nanoparticles: Simultaneous production of H2O2 and Fe2+ for efficient electro-Fenton degradation of organic contaminants[J]. Water Res,2014,48:190.
20 Rusevova K, Kopinke F D, Georgi A. Nano-sized magnetic iron oxi-des as catalysts for heterogeneous Fenton-like reactions-Influence of Fe (2)/Fe (3) ratio on catalytic performance[J].J Hazard Mater,2012,241:433.
21 Ding H, Feng Y, Liu J. Preparation and properties of Ti/SnO2-Sb2O5 electrodes by electrodeposition[J]. Mater Lett,2007,61(27):4920.
22 Wang B, Kong W, Ma H. Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode[J].J Hazard Mater,2007,146(1):295.
23 Feng Y, Cui Y, Logan B, et al. Performance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol[J].Chemo-sphere,2008,70(9):1629.
24 Meng L R, Chen W, Tan Y, et al. Fe3O4 octahedral colloidal crystals[J]. Nano Res,2011,4(4):370.
25 Paek S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure[J]. Nano Lett,2008,9(1):72.
26 Park M S, Wang G X, Kang Y M, et al. Preparation and electrochemical properties of SnO2 Nanowires for application inlithium-ion batteries[J]. Angew Chem,2007,119(5):764.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[3] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[4] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[5] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[6] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[7] 江巍雪, 汤新宇, 宋金蔚, 徐祚, 张源. 纳米流体的制备、稳定性及热物性研究进展[J]. 材料导报, 2024, 38(4): 22060208-11.
[8] 刘悦卿, 赵江涛, 王凤青, 刘雷, 丁勇, 孙颖莉, 闫阿儒. 铝镍钴永磁材料的研究进展[J]. 材料导报, 2024, 38(23): 23080088-10.
[9] 王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
[10] 朱文超, 张雷, 张亚洲, 李明清, 张建峰, 闵凡路. 碱性速凝剂对盾构壁后注浆浆体性能影响及微观机理研究[J]. 材料导报, 2024, 38(19): 23040077-7.
[11] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[12] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[13] 李晓, 赵莹莹, 故丽孜巴·阿不都热西提, 贾兴文, 钱觉时. 磷酸镁水泥高温性能研究进展[J]. 材料导报, 2024, 38(17): 23120217-8.
[14] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[15] 杨昊川, 陶光明, 陈东, 董文坤, 凌世生, 乔旭升, 樊先平. 基于纤维芯层流体力学方法制备聚合物功能微球研究进展[J]. 材料导报, 2024, 38(15): 23070035-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed