Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23070035-8    https://doi.org/10.11896/cldb.23070035
  高分子与聚合物基复合材料 |
基于纤维芯层流体力学方法制备聚合物功能微球研究进展
杨昊川1,2, 陶光明3, 陈东2,4, 董文坤2,4, 凌世生2,4, 乔旭升1,2,*, 樊先平1,2
1 浙江大学材料科学与工程学院,杭州 310027
2 浙江大学-安旭生物联合研发中心,杭州 310011
3 华中科技大学武汉光电国家研究中心,武汉 430074
4 杭州安旭生物科技有限公司,杭州 310011
Research Progress on Polymer Functional Microspheres Preparation Through Fiber Core Based Hydrodynamic Method
YANG Haochuan1,2, TAO Guangming3, CHEN Dong2,4, DONG Wenkun2,4, LING Shisheng2,4, QIAO Xusheng1,2,*, FAN Xianping1,2
1 School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
2 Zhejiang University-Anxu Biological Joint R & D Center, Hangzhou 310011, China
3 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
4 Hangzhou Anxu Biotechnology Co., Ltd., Hangzhou 310011, China
下载:  全 文 ( PDF ) ( 37084KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚合物复合微球在医药、传感、光学、显示等领域,特别是在医药领域的临床诊断、病理成像和药物输送等方面具备重要应用价值。但是,聚合物复合微球的合成路线复杂、加工效率低下,常规工艺通常难以兼顾微球粒径单分散性、生产成本、产量等综合要求。近年来,纤维芯层流体力学方法依据纤维内发生的流体界面不稳定性(PRI)现象,可在微纳米尺度制备具有高度单分散性的聚合物微球,同时成本可控,适合批量生产。本文综述了流体界面不稳定性原理、纤维芯层PRI方法制备工艺、功能微球和结构微球的纤维芯层PRI方法制备等方面的最新进展,以及针对纤维芯层PRI方法的最新改进。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨昊川
陶光明
陈东
董文坤
凌世生
乔旭升
樊先平
关键词:  纤维  聚合物  流体界面不稳定性  微纳米  功能微球  结构微球    
Abstract: Polymer composite microspheres have important applications in the fields of medicine, sensing, optics and display, especially in clinical diagnosis, pathological imaging and drug delivery in the field of medicine. However, due to the complex synthesis route and low processing efficiency, conventional technologies are often difficult to take into account the good particle size dispersion, low production cost and high yield of microspheres. In recent years, based on Plateau-Rayleigh fluid interface instability (PRI) in fibers, laminar hydrodynamic methods can prepare highly monodisperse polymer microspheres at micro or nano scale with controllable cost and considerable yield. In this paper, the principle of fluid interface instability, the preparation process of fiber core layer PRI method, the preparation of functional microspheres and structural microspheres of fiber core layer PRI method and the improvement of fiber core layer PRI method are reviewed.
Key words:  fiber    polymer    fluid interface instability    micro-nano    functional microsphere    structural microsphere
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TQ021.1  
基金资助: 浙江省科技厅“领雁”研发攻关项目(2022C01142)
通讯作者:  * 乔旭升,浙江大学材料科学与工程学院副教授、博士研究生导师。2007年于浙江大学获工学博士学位,毕业后留校任教至今。目前,主要从事发光玻璃与玻璃陶瓷、生物荧光标记材料与材料计算等方面的教学科研工作。qiaoxus@zju.edu.cn   
作者简介:  杨昊川,2022年6月于山东大学获得工学学士学位,现为浙江大学材料科学与工程学院硕士研究生,在樊先平教授、乔旭升副教授的指导下开展有机无机复合聚合物功能微球的课题研究。
引用本文:    
杨昊川, 陶光明, 陈东, 董文坤, 凌世生, 乔旭升, 樊先平. 基于纤维芯层流体力学方法制备聚合物功能微球研究进展[J]. 材料导报, 2024, 38(15): 23070035-8.
YANG Haochuan, TAO Guangming, CHEN Dong, DONG Wenkun, LING Shisheng, QIAO Xusheng, FAN Xianping. Research Progress on Polymer Functional Microspheres Preparation Through Fiber Core Based Hydrodynamic Method. Materials Reports, 2024, 38(15): 23070035-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070035  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23070035
1 Du M H. Design, fabrication, properties and application of multi-material optical fiber. Ph. D. Thesis, South China University of Technology, China, 2020 (in Chinese).
杜明辉. 多材料光纤的设计, 制备, 性能及应用研究. 博士学位论文, 华南理工大学, 2020.
2 Ray P C. Chemical Reviews, 2010, 110, 5332.
3 Dumanli A G, Savin T. Chemical Society Reviews, 2016, 45, 6698.
4 Park C J, Lee T, Xia Y, et al. Advanced Materials, 2014, 26, 4633.
5 Song J, Zhang W, Wang D, et al. Advanced Materials, 2021, 33, 2007154.
6 Derveaux S, Stubbe B G, Braeckmans K, et al. Analytical and Bioanalytical Chemistry, 2008, 391, 2453.
7 Zhang Y, Sun Y, Xu X, et al. Journal of Medicinal Chemistry, 2010, 53, 3262.
8 Bhavsar M D, Amiji M M. Expert Opinion on Drug Delivery, 2007, 4, 197.
9 Cao G, Wang Y. Properties and Applications, 2004, 2, 94.
10 Vollath D. Environmental Engineering and Management Journal, 2008, 7, 865.
11 Kaufman J J, Tao G, Shabahang S, et al. Nature, 2012, 487, 463.
12 Du M, Ye S, Tang J, et al. ACS Nano, 2018, 12, 11130.
13 Daly A C, Riley L, Segura T, et al. Nature Reviews Materials, 2020, 5, 20.
14 Utada A S, Lorenceau E, Link D R, et al. Science, 2005, 308, 537.
15 Xu B, Ma S, Xiang Y, et al. Advanced Fiber Materials, 2020, 2, 1.
16 Liu H, Wang Z, Gao L, et al. Physical review letters, 2021, 127(24), 244502.
17 Rayleigh L. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1892, 34, 145.
18 Kinoshita C M, Teng H, Masutani S M. International Journal of Multiphase Flow, 1994, 20, 523.
19 Tomotika S. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1935, 150, 322.
20 Da Silva L W, Kaviany M. International Journal of Heat and Mass Transfer, 2004, 47, 2417.
21 Eggers J, Villermaux E. Reports on Progress in Physics, 2008, 71, 036601.
22 Kaufman J J, Ottman R, Tao G, et al. Proceedings of the National Academy of Sciences, 2013, 110, 15549.
23 Monier M, Ayad D M, Wei Y, et al. Journal of Hazardous Materials, 2010, 177, 962.
24 Swayampakula K, Boddu V M, Nadavala S K, et al. Journal of Hazardous Materials, 2009, 170, 680.
25 Smith S R. Environment International, 2009, 35, 142.
26 Srivastava N K, Majumder C B. Journal of Hazardous Materials, 2008, 151, 1.
27 Kaufman J. Multifunctional, multimaterial particle fabrication via an in-fiber fluid instability. Ph. D. Thesis, University of Central Florida, USA, 2014.
28 Kaufman J J, Tan F, Ottman R, et al. In:Australian Conference on Optical Fibre Technology. Sydney, 2016, pp. AW3C. 2.
29 Bradford N. Analytical Biochemistry, 1976, 72, e254.
30 Birks T A, Li Y W. Journal of Lightwave Technology, 1992, 10, 432.
31 Tong L, Gattass R R, Ashcom J B, et al. Nature, 2003, 426, 816.
32 Pricking S, Giessen H. Optics Express, 2010, 18, 3426.
33 Kaufman J J, Tao G, Shabahang S, et al. In:2012 Conference on Lasers and Electro-Optics (CLEO). San Jose, 2012, pp. 1.
34 Wei L, Hou C, Levy E, et al. Advanced Materials, 2017, 29, 1603033.
35 Venter O, Sanderson E W, Magrach A, et al. Nature Communications, 2016, 7, 1.
36 Aktas O, Ozgur E, Tobail O, et al. Advanced Optical Materials, 2014, 2, 618.
37 Gumennik A, Wei L, Lestoquoy G, et al. Nature Communications, 2013, 4, 1.
38 Vermillac M, Lupi J F, Peters F, et al. Journal of the American Ceramic Society, 2017, 100, 1814.
39 Gumennik A, Levy E C, Grena B, et al. Proceedings of the National Academy of Sciences, 2017, 114, 7240.
40 Yan W, Page A, Nguyen-Dang T, et al. Advanced materials, 2019, 31, 1802348.
41 Zhang J, Li K, Zhang T, et al. Advanced Functional Materials, 2017, 27, 1703245.
42 Zhang J, Wang Z, Wang Z, et al. ACS Applied Materials & Interfaces, 2019, 11, 45330.
43 Zhang J, Wang Z, Wang Z, et al. Nature communications, 2019, 10, 5206.
44 Kaufman J J, Bow C, Tan F A, et al. In:Australian Conference on Optical Fibre Technology. Sydney, 2016, pp.AW4C. 1.
[1] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[2] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[3] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[4] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[5] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[6] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[7] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[8] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[9] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[10] 马锐, 金圣楠, 龙柱, 朱瑞丰, 孙昌. 高性能内燃机用滤纸的制备及其对性能的影响[J]. 材料导报, 2024, 38(6): 22050334-6.
[11] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[12] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[13] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[14] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[15] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed