Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22060083-9    https://doi.org/10.11896/cldb.22060083
  无机非金属及其复合材料 |
钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法
王照耀1,*, 梁兴文2, 翟天文2,3, 王莹2, 吴奎1
1 西安建筑科技大学理学院,西安 710055
2 西安建筑科技大学土木工程学院,西安 710055
3 中建八局第三建设有限公司,南京 210000
Calculation Method for Short-term Stiffness of RC One-way Slabs with HFRCC Permanent Formwork
WANG Zhaoyao1,*, LIANG Xingwen2, ZHAI Tianwen2,3, WANG Ying2, WU Kui1
1 School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
3 The Third Construction Co., Ltd., of China Construction Eighth Engineering Division, Nanjing 210000, China
下载:  全 文 ( PDF ) ( 17232KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢-PVA混杂纤维增强水泥基复合材料(HFRCC)具有良好的受拉韧性和耐久性能,是永久模板的理想材料。首先探究了PVA纤维掺量对HFRCC工作性能和抗折强度的影响,随着PVA纤维掺量增加,HFRCC的工作性能显著减弱,抗折强度先增大再减小,最终选用含有1.5%钢纤维和0.25%PVA纤维的HFRCC来制作永久模板。随后对六个HFRCC永久模板叠合RC单向板和一个RC单向板进行了四点受弯试验,探究了HFRCC-RC界面处理方式和配筋率对叠合板受弯性能的影响。试验结果表明:抹平、等距凹槽和钢钉拉毛三种界面处理方式对叠合板受弯性能的影响可以忽略;HFRCC模板能够有效限制裂缝发展,减小裂缝宽度和间距,叠合板的开裂弯矩相比于普通混凝土板提高了20.1%~31.7%。分别采用刚度解析法和有效惯性矩法建立了HFRCC-RC叠合板短期刚度计算方法,两种方法均有较高的计算精度且离散性较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王照耀
梁兴文
翟天文
王莹
吴奎
关键词:  钢-PVA混杂纤维增强水泥基复合材料  永久模板  短期刚度  刚度解析法  有效惯性矩法    
Abstract: Steel-PVA hybrid fiber reinforced cementitious composite (HFRCC) has great tensile toughness and durability, which is an ideal material for permanent formwork. First, the effect of PVA fiber content on the workability and flexural strength of HFRCC was explored. The results showed that with the increase of PVA fiber content, the workability was significantly weakened, while the flexural strength first increased and then decreased. The HFRCC containing 1.5% steel fiber and 0.25% PVA fiber was adopted to make permanent formwork. Then, four-point bending tests were carried out on six RC slabs with HFRCC permanent formwork (composite slabs) and one RC slab to explore the effect of HFRCC-RC interface treatments and reinforcement ratio on the flexural behavior of composite slabs. The test results showed that the influence of three HFRCC-RC interface treatments on the flexural behavior of composite slabs was basically negligible; the HFRCC formwork can effectively limit the development of cracks, reduce the crack width and crack spacing, the cracking moment of composite slabs was increased by 20.1%—31.7% compared with the RC slab. The stiffness analysis method and the effective moment of inertia method were adopted to establish the calculation method of the short-term stiffness of the HFRCC-RC composite slabs. Both methods had high calculation accuracy and small discreteness.
Key words:  steel-PVA hybrid fiber reinforced cementitious composite (HFRCC)    permanent formwork    short-term stiffness    stiffness analysis method    effective moment of inertia method
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TU528.572  
基金资助: 国家自然科学基金(51278402;12202334);陕西省自然科学基础研究计划(2023-JC-QN-549;2022JQ-427);陕西省博士后科研项目(2023BSHEDZZ269)
通讯作者:  *王照耀,西安建筑科技大学理学院讲师。2022年天津大学结构工程专业博士毕业。目前主要从事纤维增强水泥基复合材料及其应用方面的研究工作。主持和参与国家级和省部级科研项目6项;发表科研论文20余篇,包括Construction and Building Materials、Structures、Structural Concrete、《土木工程学报》等。wzy@xauat.edu.cn   
引用本文:    
王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
WANG Zhaoyao, LIANG Xingwen, ZHAI Tianwen, WANG Ying, WU Kui. Calculation Method for Short-term Stiffness of RC One-way Slabs with HFRCC Permanent Formwork. Materials Reports, 2024, 38(3): 22060083-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060083  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22060083
1 Hall J, Mottram J. Journal of Composites for Construction, 1998, 2(2), 78.
2 Yin S, Cong X, Wang C, et al. Structures, 2021, 29, 1424.
3 Yin S P, Wang L C, Wang C C, et al. Journal of Building Structures, 2021, 42(S1), 291(in Chinese).
尹世平, 王璐晨, 王聪聪, 等. 建筑结构学报, 2021, 42(S1), 291.
4 Yang Y B, Yang K Y, Wu Z H, et al. Materials Reports, 2017, 31(23), 120(in Chinese).
杨医博, 杨凯越, 吴志浩, 等. 材料导报, 2017, 31(23), 120.
5 Liang X W, Wang P, Xu M X, et al. Journal of Building Structures, 2020, 41(7), 154(in Chinese).
梁兴文, 汪萍, 徐明雪, 等. 建筑结构学报, 2020, 41(7), 154.
6 Huang B, Li Q, Xu S, et al. Composite Structures, 2017, 180, 892.
7 Zhang L H, Liu J P, Zhou H X, et al. Materials Reports, 2017, 31(23), 109(in Chinese).
张丽辉, 刘加平, 周华新, 等. 材料导报, 2017, 31(23), 109.
8 Khan S U, Ayub T. Construction and Building Materials, 2016, 120, 540.
9 Liu F, Xu K, Ding W, et al. Cement and Concrete Composites, 2021, 123, 104196.
10 Deng Z C. Acta Materiae Compositae Sinica, 2016, 33(6), 1274(in Chinese).
邓宗才. 复合材料学报, 2016, 33(6), 1274.
11 Zhou Y, Xiao Y, Gu A, et al. Construction and Building Materials, 2019, 197, 615.
12 Han J P, Liu W L, Cui M. China Civil Engineering Journal, 2018, 51(11), 32(in Chinese).
韩建平, 刘文林, 崔明. 土木工程学报, 2018, 51(11), 32.
13 China Association for Engineering Construction Standardization. Standard test methods for fiber reinforced concrete:CECS 13-2009, China Planning Press, China, 2010(in Chinese).
中国工程建设标准化协会. 纤维混凝土试验方法标准:CECS 13-2009, 中国计划出版社, 2010.
14 Ministry of Housing and Urban Rural Development of the People's Republic of China. Code for design of concrete structures:GB 50010-2010, China Architecture & Building Press, China, 2015(in Chinese).
中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010-2010, 中国建筑工业出版社, 2015.
15 Zanotti C, Banthia N, Plizzari G. Cement and Concrete Research, 2014, 63, 117.
16 Xia D T, Li X Y, Wu H. Journal of Shenyang Jianzhu University(Natural Science), 2022, 38(4), 645.
夏冬桃, 李欣怡, 吴昊. 沈阳建筑大学学报(自然科学版), 2022, 38(4), 645.
17 Jang H O, Lee H S, Cho K, et al. Construction and Building Materials, 2017, 152, 16.
18 Gu X L. Basic principles of concrete structures, Tongji University Press, China, 2015, pp.74(in Chinese).
顾祥林. 混凝土结构基本原理, 同济大学出版社, 2015, pp.74.
19 CEB-FIP. Fib model code for concrete structures 2010. Ernst & Sohn, Germany, 2013.
20 Maya L F, Fernandez R M, Muttoni A, et al. Engineering Structures, 2012, 40, 83.
21 Voo J Y L, Foster S J. In:6th International RILEM Symposium on Fibre Reinforced Concretes. Varenna, 2004, pp.875.
22 Montaignac R, Massicotte B, Charron J P. Materials and Structures, 2016, 45, 623.
23 ACI Committee 318. Building code requirements for structural concrete and commentary:ACI 318-08, American Concrete Institute, USA, 2008.
24 Canadian Standards Association. Design of concrete structures:CSA A23. 3-04, Canadian Standards Association, Canada, 2004.
25 China Association for Engineering Construction Standardization. Technical specification for fiber reinforced concrete structures:CECS 38-2004, China Planning Press, China, 2004(in Chinese).
中国工程建设标准化协会. 纤维混凝土结构技术规程:CECS 38-2004, 中国计划出版社, 2004.
26 Lan Z J, Ding D J. Journal of Nanjing Institute of Technology, 1985, 1(2), 64(in Chinese).
蓝宗建, 丁大钧. 南京工学院学报, 1985, 1(2), 64.
27 Nunes S, Pimentel M, Ribeiro F, et al. Cement and Concrete Compo-sites, 2017, 83, 222.
28 Bastien-Masse M, Denarié E, Brühwiler E. Cement and Concrete Compo-sites, 2016, 67, 111.
29 Rashid M A, Mansur M A. ACI Structural Journal, 2005, 102(3), 462.
[1] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[2] 杨国梁, 毕京九, 董智文, 刘依, 韩子默, 李旭光. 基于数字图像相关技术的混杂纤维混凝土动态抗拉性能试验研究[J]. 材料导报, 2023, 37(21): 22030038-9.
[3] 夏伟, 陆松, 白二雷, 许金余, 杜宇航, 姚廒. 碳纳米管-碳纤维复合改性混凝土力学性能研究[J]. 材料导报, 2023, 37(16): 22010125-9.
[4] 陈宇良, 张绍松, 徐金俊, 叶培欢, 姜锐. 压剪作用下PVA纤维再生混凝土力学性能试验研究[J]. 材料导报, 2023, 37(11): 21090102-7.
[5] 林长宇, 王启睿, 杨立云, 吴云霄, 李芹涛, 谢焕真, 汪自扬, 张飞. 玄武岩纤维活性粉末混凝土在冲击载荷下的力学行为及本构关系[J]. 材料导报, 2022, 36(19): 21050237-7.
[6] 赵燕茹, 刘明, 王磊, 王志慧. 碳化高温后普通混凝土抗压强度及孔结构演化规律[J]. 材料导报, 2022, 36(19): 21050152-8.
[7] 宣卫红, 徐文磊, 陈育志, 陈徐东, 程熙媛. 不同加载速率下高性能水泥基复合材料断裂性能研究[J]. 材料导报, 2021, 35(22): 22051-22056.
[8] 夏伟, 许金余, 聂良学, 王志航, 黄哲, 姚廒. 冲击荷载下纳米碳纤维混凝土的动态受压力学特性[J]. 材料导报, 2021, 35(22): 22063-22071.
[9] 王哲伟, 周华飞, 谢子令. 定向钢纤维增强地质聚合物弯曲破坏的声发射特性[J]. 材料导报, 2021, 35(12): 12214-12219.
[10] 魏致强, 王远贵, 齐孟, 郑旭煦, 袁小亚. 没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响[J]. 材料导报, 2021, 35(10): 10042-10047.
[11] 邢小光, 许金余, 白二雷, 朱靖塞, 王谕贤. 纳米Fe2O3水泥基复合材料制备的响应曲面研究[J]. CLDB, 2018, 32(8): 1367-1372.
[12] 吕生华,罗潇倩,张 佳,高党国,孙 立,胡浩岩. 氧化石墨烯调控水泥基材料形成大规模规整结构及其性能表征[J]. 《材料导报》期刊社, 2017, 31(24): 10-14.
[13] 江世永,陶 帅,姚未来,吴世娟,蔡 涛. 高韧性纤维混凝土单轴受压性能及尺寸效应[J]. 《材料导报》期刊社, 2017, 31(24): 161-168.
[14] 吕生华, 孙立, 张佳, 胡浩岩, 雷颖, 侯永刚. 具有大规模规整致密花状微观结构形貌高/超高性能氧化石墨烯/水泥基复合材料*[J]. CLDB, 2017, 31(23): 78-84.
[15] 程俊, 刘加平, 刘建忠, 张倩倩, 张丽辉, 林玮, 韩方玉. 含粗骨料超高性能混凝土力学性能研究及机理分析*[J]. CLDB, 2017, 31(23): 115-119.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed