Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21050237-7    https://doi.org/10.11896/cldb.21050237
  无机非金属及其复合材料 |
玄武岩纤维活性粉末混凝土在冲击载荷下的力学行为及本构关系
林长宇1, 王启睿2, 杨立云1, 吴云霄1, 李芹涛3, 谢焕真1, 汪自扬1, 张飞1
1 中国矿业大学(北京)力学与建筑工程学院,北京 100083
2 清华大学土木工程系,北京 100084
3 莱州汇金矿业投资有限公司,山东 烟台 261400
Mechanical Behavior and Constitutive Relationship of Basalt Fiber Reactive Powder Concrete Under Impact Loading
LIN Changyu1, WANG Qirui2, YANG Liyun1, WU Yunxiao1, LI Qintao3, XIE Huanzhen1, WANG Ziyang1, ZHANG Fei1
1 School of Mechanics and Civil Engineering,China University of Mining and Technology(Beijing), Beijing 100083, China
2 Department of Civil Engineering, Tsinghua University, Beijing 100084, China
3 Laizhou Huijin Mining Investment Co., Ltd., Yantai 261400, Shandong, China
下载:  全 文 ( PDF ) ( 7959KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用直径为50 mm的分离式霍普金森压杆(Split Hopkinson pressure bar,SHPB)对玄武岩纤维(Basalt fiber,BF)体积分数为0%、0.5%、1%和1.5%的活性粉末混凝土(Reactive powder concrete,RPC)进行高速冲击压缩试验,分析BF体积分数和应变率对RPC的动态抗压强度、极限应变、冲击韧性和破坏程度的影响,建立适用于玄武岩纤维活性粉末混凝土(Basalt fiber reactive powder concrete,BF-RPC)考虑损伤的动态本构方程。结果表明:RPC具有显著的应变率效应,即对于BF体积分数相同的RPC,加载应变率从60 s-1增加到120 s-1时,其动态抗压强度、动态强度增长因子、极限应变、冲击韧性以及破碎程度逐渐增加;BF的加入改变了RPC的冲击力学性能和破坏形态,当加载应变率不变,BF体积分数从0%增加到1.5%时,RPC动态抗压强度和冲击韧性随BF体积分数的增加呈现出先增大后减小的趋势,且BF的加入能够有效抑制裂纹的产生和扩展。综合来看,BF最优体积分数为0.5%;通过对试验应力-应变曲线进行拟合可知,基于考虑损伤的动态本构模型适用于掺加BF的RPC材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林长宇
王启睿
杨立云
吴云霄
李芹涛
谢焕真
汪自扬
张飞
关键词:  分离式霍普金森压杆  玄武岩纤维  活性粉末混凝土  动态力学性能  分形维数  本构模型    
Abstract: High-speed impact compression tests of reactive powder concrete (RPC) with 0%, 0.5%, 1% and 1.5% volume fraction of basalt fiber (BF) were carried out by using the 50 mm split Hopkinson pressure bar (SHPB). The effects of BF volume fraction and strain rate on the dynamic compressive strength, ultimate strain, impact toughness and failure degree of RPC were studied. A dynamic constitutive equation for basalt fiber reactive powder concrete (BF-RPC) considering damage was established. The results show that RPC has significant strain rate effect, and for RPC with the same volume fraction of BF, the dynamic compressive strength, dynamic strength growth factor, ultimate strain, impact toughness and crushing degree increase gradually when the loading strain rate increases from 60 s-1 to 120 s-1. The impact mechanical properties and failure morphology of RPC are changed by the addition of BF. When the volume fraction of BF with the same loading strain rate increases from 0% to 1.5%, the dynamic compressive strength and impact toughness of RPC first increase and then decrease with the increase of BF volume fraction, and the generation and propagation of cracks can be effectively restrained by the addition of BF. Overall, the optimal volume fraction of BF is 0.5%. By fitting the experimental stress-strain curves, it is known that the dynamic constitutive model considering damage is suitable for BF-RPC.
Key words:  split Hopkinson pressure bar    basalt fiber    reactive powder concrete    dynamic mechanical property    fractal dimension    constitutive model
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TU528.572  
基金资助: 国家自然科学基金(51974316);中国矿业大学(北京)大学生创新训练项目(202106061);中央高校基本科研业务费项目(2021YJSLJ12)
通讯作者:  lywqr3063@163.com   
作者简介:  林长宇,2019年7月毕业于中北大学,获得工学学士学位。现为中国矿业大学(北京)力学与建筑工程学院硕士研究生,在杨立云教授的指导下进行研究。目前主要从事玄武岩纤维活性粉末混凝土的静态和动态力学性能研究。
王启睿,清华大学土木工程系博士研究生,军事科学院国防工程研究院助理研究员,国家注册土木工程师(岩土)。2002年获得兰州大学工学学士学位,2011年获得四川大学工学硕士学位,研究工作主要围绕岩石力学、岩土工程、地下工程等,负责完成科研项目10多项。以第一作者在学术期刊上发表论文20余篇,授权国家发明专利3项。
引用本文:    
林长宇, 王启睿, 杨立云, 吴云霄, 李芹涛, 谢焕真, 汪自扬, 张飞. 玄武岩纤维活性粉末混凝土在冲击载荷下的力学行为及本构关系[J]. 材料导报, 2022, 36(19): 21050237-7.
LIN Changyu, WANG Qirui, YANG Liyun, WU Yunxiao, LI Qintao, XIE Huanzhen, WANG Ziyang, ZHANG Fei. Mechanical Behavior and Constitutive Relationship of Basalt Fiber Reactive Powder Concrete Under Impact Loading. Materials Reports, 2022, 36(19): 21050237-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050237  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21050237
1 Richard P, Cheyrezy M. Cement and Concrete Research, 1995, 25(7), 1501.
2 Jiang Y B, Wu L H, Chen Z M. Materials Reports A: Review Papers, 2017, 31(12), 90(in Chinese).
蒋友宝, 吴林华, 陈治茂. 材料导报:综述篇, 2017, 31(12), 90.
3 Shan B, Lai D D, Liu F C. Materials Reports A: Review Papers, 2017, 31(12), 96(in Chinese).
单波, 赖大德, 刘福财. 材料导报:综述篇, 2017, 31(12), 96.
4 Zhu B, Duan F, He J, et al. Materials Reports, 2022, 36(10), 69(in Chinese).
朱博, 段锋, 何娟, 等. 材料导报, 2022, 36(10), 69.
5 Sim J, Park C, Moon D Y. Composites Part B: Engineering, 2005, 36(6-7), 504.
6 Liu H, Liu S, Zhou P, et al. Applied Sciences, 2019, 9(18), 3931.
7 Grzeszczyk S, Matuszek-Chmurowska A, Vejmelková E, et al. Materials, 2020, 13(13), 2948.
8 Shan W C. Performance impact analysis and acoustic characterization of basalt fiber reinforced reactive powder concrete. Master's Thesis, Jilin University, 2018(in Chinese).
单文臣. 武岩纤维活性粉末混凝土性能影响分析及声学特性表征. 硕士论文, 吉林大学, 2018.
9 Ju Y Z, Fan Y T, Wang D H, et al. Bulletin of the Chinese Ceramic So-ciety, 2017, 36(5), 1777(in Chinese).
鞠彦忠, 范云廷, 王德弘, 等. 硅酸盐通报, 2017, 36(5), 1777.
10 Jiao C, Sun W. Journal of Wuhan University of Technology(Materials Science Edition), 2015, 30(4), 752.
11 Xie L, Li Q H, Xu S L. Engineering Mechanics, 2021, 38(3), 169(in Chinese).
谢磊, 李庆华, 徐世烺. 工程力学, 2021, 38(3), 169.
12 Ju Y, Sheng G H, Liu H B, et al. Scientia Sinica Technologica, 2010, 40(12), 1437(in Chinese).
鞠杨, 盛国华, 刘红彬, 等. 中国科学:技术科学, 2010, 40(12), 1437.
13 Ren X T, Zhou T Q, Zhong F P, et al. Explosion and Shock Waves, 2011, 31(5), 540(in Chinese).
任兴涛, 周听清, 钟方平, 等. 爆炸与冲击, 2011, 31(5), 540.
14 Zhang H, Wang L, Zheng K, et al. Construction and Building Materials, 2018, 187, 584.
15 Li W M, Xu J Y, Shen L J, et al. Journal of Vibration and Shock, 2008(2), 129(in Chinese).
李为民, 许金余, 沈刘军, 等. 振动与冲击, 2008(2), 129.
16 Li W M, Xu J Y. Acta Armamentarii, 2009, 30(3), 350(in Chinese).
李为民, 许金余. 兵工学报, 2009, 30(3), 350.
17 Zhang H, Wang L, Bai L, et al. Construction and Building Materials, 2019, 204, 303.
18 Wang D R, Hu S S. Journal of Experimental Mechanics, 2002, 17(1), 23(in Chinese).
王道荣, 胡时胜. 实验力学, 2002, 17(1), 23.
19 Walter J. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1976, 13(6), 177.
20 Nataraja M C, Dhang N, Gupta A P. Cement and Concrete Composites, 1999, 21, 383.
21 He M C, Yang G X, Miao J L, et al. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8), 1521(in Chinese).
何满潮, 杨国兴, 苗金丽, 等. 岩石力学与工程学报, 2009, 28(8), 1521.
22 Ma Q Y, Gao C H. Rock and Soil Mechanics, 2018, 39(11), 3921(in Chinese).
马芹永,高常辉. 岩土力学, 2018, 39(11), 3921.
23 Wang L L. Foundation of stress waves, National Defence Industry Press, China, 2005(in Chinese).
王礼立. 应力波基础, 国防工业出版社, 2005.
24 Wang L L, Dong X L, Sun J Z. Explosion and Shock Waves, 2006(3), 193(in Chinese).
王礼立, 董新龙, 孙紫建. 爆炸与冲击, 2006(3), 193.
[1] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[2] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[3] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[4] 霍泳霖, 霍冀川, 张行泉, 秦桂璐. 玄武岩的开发利用进展[J]. 材料导报, 2022, 36(6): 20080281-11.
[5] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[6] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[7] 段运, 杨子江, 王起才, 张戎令, 吴朝阳, 薛彦瑾, 魏定邦. 负温环境下混凝土孔结构与强度和渗透性的关系[J]. 材料导报, 2022, 36(15): 21110198-6.
[8] 朱博, 段锋, 何娟, 史琛, 刘文欢. 陶砂替代石英砂制备活性粉末混凝土(RPC)的性能研究[J]. 材料导报, 2022, 36(10): 21030192-5.
[9] 商怀帅, 邵姝文, 袁守涛, 冯海暴. NPR钢筋与海工混凝土的粘结性能试验研究[J]. 材料导报, 2021, 35(z2): 228-235.
[10] 于泽明, 陈艳, 马嵘萍, 胡晓辰, 吕祥锋. 动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究[J]. 材料导报, 2021, 35(z2): 669-677.
[11] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[12] 陈新明, 史玉良, 焦华喆, 靳翔飞, 吴亚闯, 谭毅. 基于搜索锥算法的纤维分布特征及对BFRC的增强机制[J]. 材料导报, 2021, 35(4): 4061-4066.
[13] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[14] 李杰锋, 杨忠清. 形状记忆合金热力学经验本构模型的数值分析及修正[J]. 材料导报, 2021, 35(18): 18116-18123.
[15] 杜金亮, 冯运莉, 张颖隆. 新型汽车用Q&P钢的研究现状与发展趋势[J]. 材料导报, 2021, 35(15): 15189-15196.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed