Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21110198-6    https://doi.org/10.11896/cldb.21110198
  无机非金属及其复合材料 |
负温环境下混凝土孔结构与强度和渗透性的关系
段运1, 杨子江1, 王起才2,*, 张戎令2, 吴朝阳1, 薛彦瑾2, 魏定邦3
1 兰州交通大学土木工程学院,兰州 730070
2 兰州交通大学道桥工程灾害防治技术国家地方联合工程实验室, 兰州 730070
3 甘肃省交通规划勘察设计院股份有限公司, 兰州 730030
Pore Structure of Concrete at Negative Temperature Curing in Relation to Strength and Penetration
DUAN Yun1, YANG Zijiang1, WANG Qicai2,*, ZHANG Rongling2, WU Chaoyang1, XUE Yanjin2, WEI Dingbang3
1 School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 National and Provincial Joint Engineering Laboratory of Road & Bridge Disaster Prevention and Control, Lanzhou 730070, China
3 Gansu Province Transportation Planning, Survey and Design Institute Co., Ltd., Lanzhou 730030, China
下载:  全 文 ( PDF ) ( 5143KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究多年冻土区混凝土孔结构与其抗压强度和氯离子渗透性之间的关系,依据多年冻土区地层温度,设计了负温(-3 ℃)环境下三种强度等级的混凝土的抗压强度、抗氯离子渗透性和孔结构试验。结果表明,负温养护下,混凝土中200 nm以上孔的比例显著增加,阈值孔径增大,分形维数减小;标养和负温下混凝土的临界孔级分别为50~100 nm和100~200 nm,负温养护使得临界孔级增大;负温养护并未改变混凝土的抗压强度与分形维数、孔隙率以及平均孔径之间的正负相关性,但却降低了它们之间的相关程度;双参数模型能准确描述混凝土强度与其孔隙率和平均孔径之间的定量关系;混凝土的氯离子迁移系数与阈值孔径平方呈正比例关系,与分形维数呈负线性相关,减小阈值孔径可以有效提高混凝土的抗渗性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段运
杨子江
王起才
张戎令
吴朝阳
薛彦瑾
魏定邦
关键词:  阈值孔径  临界孔级  分形维数  双参数模型    
Abstract: To explore the relationship between the pore structure of concrete and its compressive strength and chloride ion permeability in permafrost regions, tests of compressive strength, its resistance to chloride ion penetration and pore structure are designed for concretes with three different strength grades at negative temperature (-3 ℃), based on the ground temperature in permafrost regions. The results show that the proportion of pores above 200 nm significantly increases in the concrete cured at negative temperature, with the threshold pore diameter of concrete increased and the fractal dimension of concrete decreased simultaneously. The critical pore levels of concretes cured at standard and negative temperatures are 50—100 nm and 100—200 nm, respectively. The critical pore levels are significantly increased due to negative temperature curing. The relationship between the compressive strength of concrete and its fractal dimension, porosity and average pore diameter still shows the positive and negative correlation under negative temperature curing, but the degree of correlation between them is reduced. The dual-parameter regression model can accurately describe the quantitative relationship between the strength of concrete and its porosity and average pore diameter. The chloride ion migration coefficient of concrete is positively correlated with the square of the threshold pore diameter and negatively linearly correlated with the fractal dimension. Reducing the threshold pore size can effectively improve the impermeability of concrete.
Key words:  threshold pore diameter    critical pore levels    fractal dimension    dual-parameter regression model
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51768033)
通讯作者:  *13909486262@139.com   
作者简介:  段运,兰州交通大学博士研究生。2013年和2016年分别获得兰州交通大学学士和硕士研究生学位。主要从事干寒地区混凝土力学性能及耐久性研究。
王起才,兰州交通大学教授、博士生导师。1983年本科毕业于兰州铁道学院,1994年在西南交通大学获得硕士研究生学位,2004年在中国空间技术研究院获得博士研究生学位。主要从事工程新材料及干寒地区混凝土耐久性与结构全寿命研究,发表论文300余篇。2008年获国家科技进步特等奖。
引用本文:    
段运, 杨子江, 王起才, 张戎令, 吴朝阳, 薛彦瑾, 魏定邦. 负温环境下混凝土孔结构与强度和渗透性的关系[J]. 材料导报, 2022, 36(15): 21110198-6.
DUAN Yun, YANG Zijiang, WANG Qicai, ZHANG Rongling, WU Chaoyang, XUE Yanjin, WEI Dingbang. Pore Structure of Concrete at Negative Temperature Curing in Relation to Strength and Penetration. Materials Reports, 2022, 36(15): 21110198-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110198  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21110198
1 Cheng G D, Wu Q B, Ma W. Scientia Sinica (Technologica), 2009, 39(1), 16 (in Chinese).
程国栋, 吴青柏, 马巍. 中国科学(技术科学), 2009, 39(1), 16.
2 Ran Y H, Li X, Cheng G D, et al. Scientia Sinica (Terrae), 2021, 51(2), 183 (in Chinese).
冉有华, 李新, 程国栋, 等. 中国科学:地球科学, 2021, 51(2), 183.
3 Ma H, Liao X P, Lai Y M. Journal of Glaciology and Geocryology, 2005, 27(2), 176 (in Chinese).
马辉, 廖小平, 赖远明.冰川冻土, 2005, 27(2), 176.
4 Shang Y H, Niu F J, Wu X Y, et al. Journal of the China Railway Society, 2020, 42(5), 127 (in Chinese).
商允虎, 牛富俊, 吴旭阳, 等. 铁道学报, 2020, 42(5), 127.
5 Mi W J, Li Y, Shi G Q, et al. Journal of Railway Engineering Society, 2010, 27(9), 15 (in Chinese).
米维军, 李勇, 石刚强, 等. 铁道工程学报, 2010, 27(9), 15.
6 Gao Q, Wen Z, Ming F, et al. Applied Thermal Engineering, 2019, 149(25), 484.
7 Li P R, Gao X J, Wang K J, et al. Construction and Building Materials, 2020, 239(10), 117862.
8 Wang X X, Liu C, Liu S G, et al.Construction and Building Materials, 2020, 247(30), 118431.
9 Zhang S H, Wang Q C, Zhang R L, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(8), 2486 (in Chinese).
张少华, 王起才, 张戎令, 等.硅酸盐通报, 2016, 35(8), 2486.
10 Zhang J S, Wang B Q, Yang Q, et al. Journal of Shenyang Jianzhu University, 2011, 27(5), 915 (in Chinese).
张巨松, 王保权, 杨奇, 等. 沈阳建筑大学学报, 2011, 27(5), 915.
11 Hu Y B, Miao G Y, Xiong Y. Journal of Building Materials, 2017, 20(6), 975 (in Chinese).
胡玉兵, 苗广营, 熊羽.建筑材料学报, 2017, 20(6), 975.
12 Liu L T, Shao S L, Xu J Y, et al. Materials Reports A: Reviews Papers, 2015, 29(7), 102 (in Chinese).
刘浪涛, 邵式亮, 许金余, 等. 材料导报:综述篇, 2015, 29(7), 102.
13 Coussy O, Monteiro P J M. Cement and Concrete Research, 2008, 38(1), 40.
14 Kogbara R B, Iyengar S R, Grasley Z C, et al. Cryogenics, 2014, 64, 21.
15 Lyu Q, Qiu Q L, Zheng J, et al. Construction and Building Materials, 2019, 228(20), 116986.
16 Liu P, Cui S G, Li Z H, et al. Construction and Building Materials, 2019, 207(20), 329.
17 Guo X L, Song M. Materials Reports, 2018, 32(Z2), 440 (in Chinese).
郭晓潞, 宋猛. 材料导报, 2018, 32(Z2), 440.
18 Wu K, Shi H S, Xu L L, et al. Cement and Concrete Research, 2016, 79, 243.
19 Teng J Y, Tang J X, Wang J B, et al. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1), 3263 (in Chinese).
腾俊洋, 唐建新, 王进博, 等. 岩石力学与工程学报, 2018, 37(S1), 3263.
20 Zhao Y R, Liu F F, Wang L, et al. Journal of Building Materials, 2020, 23(06), 1328 (in Chinese).
赵燕茹, 刘芳芳, 王磊, 等. 建筑材料学报, 2020, 23(6), 1328.
21 Jin S S, Zhang J X, Han S. Construction and Building Materials, 2017, 135(15), 1.
22 Cui S G, Liu P, Cui E Q, et al. Construction and Building Materials, 2018, 173(10),124.
23 Zarnaghi V N, Fouroghi-Asl A, Nourani V, et al. Construction and Building Materials, 2018, 193(30), 557.
24 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081-2019. 中国建筑工业出版社, 2019.
25 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082-2009. 中国建筑工业出版社, 2009.
26 Rootare H M, Prenzlow C F. The Journal of physical chemistry, 1967, 71(8), 2733.
27 Zhang B Q, Li S F. Industrial & Engineering Chemistry Research, 1995, 34(4), 1383.
28 Zhang B Q,Liu X F, Li S F. Transactions of Tianjin University, 2000, 2, 181.
29 Zeng Q, Wang X H, Yang P C, et al. Materials Characterization, 2019, 151, 203.
30 Zeng Q, Li K F, Fen-Chong T, et al. Construction and Building Mate-rials, 2012, 28(1), 468.
31 Hu S G, Zhang Y S, Ding Q J. Journal of Building Materials, 2000, 3(3), 202 (in Chinese).
胡曙光, 张云升, 丁庆军. 建筑材料学报, 2000, 3(3), 202.
32 Wu Z W, Lian H Z. High performance concret, China Railway Publishing House, China, 1999, pp. 24 (in Chinese).
吴中伟, 廉慧珍. 高性能混凝土, 中国铁道出版社, 1999, pp. 24.
33 Zajac M, Skocek J, Adu-Amankwah S, et al. Cement and Concrete Composites, 2018, 90, 178.
34 Guo Y C, Wu S L, Lyu Z H, et al. Construction and Building Materials, 2021, 269(1), 121262.
35 Katz A J, Thompson A H. Physical Review B Condens Matter, 1986, 34(11), 8179.
36 Yang Y K, Wang M R. Cement and Concrete Composites, 2018, 85, 92.
[1] 林长宇, 王启睿, 杨立云, 吴云霄, 李芹涛, 谢焕真, 汪自扬, 张飞. 玄武岩纤维活性粉末混凝土在冲击载荷下的力学行为及本构关系[J]. 材料导报, 2022, 36(19): 21050237-7.
[2] 于江, 皮滟杰, 秦拥军. 循环载荷下再生混凝土损伤声发射特性[J]. 材料导报, 2021, 35(13): 13011-13017.
[3] 徐善华, 夏敏. 锈蚀钢材表面的分形维数与多重分形谱[J]. 材料导报, 2020, 34(16): 16140-16143.
[4] 熊锐, 杨发, 关博文, 谢超, 李立顶, 盛燕萍, 陈华鑫. 路用高抗滑集料耐磨性能评价与机理分析[J]. 材料导报, 2019, 33(20): 3436-3440.
[5] 李安邦, 徐善华. 中性盐雾加速腐蚀钢结构表面形貌分形维数表征[J]. 材料导报, 2019, 33(20): 3502-3507.
[6] 马骁, 谢雪鹏, 叶雄伟, 何巨鹏, 朱杰. 基于氮气吸附法的钙基地聚合物孔隙结构分形特征[J]. 材料导报, 2019, 33(12): 1989-1994.
[7] 杨洋, 王罡, 俞建超, 周婷婷, 李遥, 帅茂兵. 无氧铜超精加工表面微观形貌的分形维数表征*[J]. 《材料导报》期刊社, 2017, 31(3): 52-56.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed