Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 52-56    https://doi.org/10.11896/j.issn.1005-023X.2017.03.009
  材料综述 |
无氧铜超精加工表面微观形貌的分形维数表征*
杨洋1,2, 王罡2, 俞建超2, 周婷婷1,2, 李遥1, 帅茂兵1
1 表面物理与化学重点实验室,江油 621908;
2 清华大学精密超精密制造装备及控制北京市重点实验室,北京 100084;
Fractal Dimension Characterization on Surface Microtopography of Ultra-precision Machined Oxygen-free Copper
YANG Yang1,2, WANG Gang2, YU Jianchao2, ZHOU Tingting1,2, LI Yao1, SHUAI Maobing1
1 Science and Technology on Surface Physic and Chemistry Laboratory, Jiangyou 621908;
2 Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084;
下载:  全 文 ( PDF ) ( 1819KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 单点金刚石超精密加工能够获得纳米级的低粗糙度表面。进一步的实验表明,采用该工艺进行退火态无氧铜切削,已加工表面在刀痕基础上还会出现清晰的晶界浮凸现象。传统的粗糙度概念无法有效表征与区分含有晶界浮凸信息的超精加工表面微观形貌。引入分形维数概念,采用该理论中尺码法对无氧铜超精加工表面的微观形貌进行分形维数计算;为降低切削刀痕信号干扰、突出晶界浮凸信息,设计表面信号带阻滤波方法。计算结果表明,超精加工后的表面分形维数包含了加工刀痕与晶界浮凸信息,由于两者尺度相近,传统的粗糙度测量无法区分其差异;采用带阻滤波与尺码法耦合方式,能够有效识别晶界浮凸特点,定量地反映微观尺度下超精加工表面的形貌特征信息。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨洋
王罡
俞建超
周婷婷
李遥
帅茂兵
关键词:  分形维数  晶界浮凸  尺码法  带阻滤波  单点金刚石切削    
Abstract: Nano-scale surface of low roughness can be obtained in single point diamond ultra-precision machining. Further experiments show that clear embossed grain boundary will appear on the machined surface filled with tool marks when annealed oxygen-free copper cut by single point diamond ultra-precision machining. Ultra-precision machined surface′s microtopography with embossed grain boundary can not be effectively characterized and distinguished with traditional concept of roughness. In this work, the concept of fractal dimension was introduced and yard stick method was used to calculate fractal dimension of surface microtopography of ultra-precision machined oxygen-free copper. In order to reduce interference of tool marks signal and extrude information of embossed grain boundary, band-stop filter method was designed. The results showed that the surface fractal dimension and embossed grain boundary could be obtained on the surface after ultra-precision machining, but due to the similar size scale, the difference could not be distinguished by traditional roughness measurement. By coupling band-stop filtering and yard stick method, the feature of embossed grain boundary could be effectively identified, and which could reflect the microscopic, characteristic information of ultra-precision machined surface′s topography quantitatively.
Key words:  fractal dimension    grain boundary step    yard stick method    band-stop filtering    single point diamond turning
               出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  TH161+.14  
基金资助: *北京市自然科学基金面上项目(3152013);清华大学摩擦学国家重点实验室自主科研重点项目(SKLT2013A01)
作者简介:  杨洋:男,1991年生,硕士研究生,研究方向为单点金刚石切削金属铈表层及亚表层损伤机理 E-mail:937815402@qq.com 王罡:通讯作者,男,1976年生,博士,副研究员,硕士研究生导师,研究方向为数字化制造、精密/超精加工材料响应 E-mail:gwang@tsinghua.edu.cn
引用本文:    
杨洋, 王罡, 俞建超, 周婷婷, 李遥, 帅茂兵. 无氧铜超精加工表面微观形貌的分形维数表征*[J]. 《材料导报》期刊社, 2017, 31(3): 52-56.
YANG Yang, WANG Gang, YU Jianchao, ZHOU Tingting, LI Yao, SHUAI Maobing. Fractal Dimension Characterization on Surface Microtopography of Ultra-precision Machined Oxygen-free Copper. Materials Reports, 2017, 31(3): 52-56.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.009  或          http://www.mater-rep.com/CN/Y2017/V31/I3/52
1 Liang Yingchun, Chen Guoda, Sun Yazhou, et al. Research status and outlook of ultra-precision machine tool[J]. J Harbin Institute of Technology,2014,46(5):28(in Chinese).
梁迎春,陈国达,孙雅洲,等.超精密机床研究现状与展望[J].哈尔滨工业大学学报,2014,46(5):28.
2 Xiong R, Wu H. Study on cutting mechanism of Ti6Al4V in ultra-precision machining[J]. Int J Adv Manuf Technol,2016,86(5):1311.
3 Yuan Julong, Zhang Feihu, Dai Yifan, et al. Development research of science and technologies in ultra-precision machining field[J]. J Mech Eng,2010,46(15):161(in Chinese).
袁巨龙,张飞虎,戴一帆,等.超精密加工领域科学技术发展研究[J].机械工程学报,2010,46(15):161.
4 Nomura M, Ma B X, Horiuchi O, et al. Study on machining accuracy in micro-endmilling[J]. Key Eng Mater,2012,516:349.
5 Weule H, Hüntrup V, Tritschler H. Micro-cutting of steel to meet new requirements in miniaturization[J]. CIRP Ann: Manuf Tech-nol,2001,50(1):61.
6 Zhou Jun, Li Jianfeng, Sun Jie.The influence of tool edge radius on size effect in orthogonal micro-cutting process of 7050-T7451 aluminum alloy[J]. Key Eng Mater,2008,375-376:31.
7 Tauhiduzzaman M, Veldhuis S C. Effect of material microstructure and tool geometry on surface generation in single point diamond tur-ning[J]. Precis Eng,2014,38(3):481.
8 Lee Y, Chang A K, Dornfeld D A. Acoustic emission monitoring for the diamond machining of oxygen-free high-conductivity copper[J]. J Mater Process Technol,2002,127(2):199.
9 Wang Hao. Factors affecting quality of ultra-precision diamond cutting[J]. New Technol New Process,2014(1):116(in Chinese).
王昊.影响单点金刚石切削表面质量的因素[J].新技术新工艺,2014(1):116.
10 Liu Zongchang, Ji Yunping, Ren Huiping. Discoveries in research on solid-state phase transformation [J]. Heat Treat,2015(2):1(in Chinese).
刘宗昌,计云萍,任慧平.固态相变研究的新发现[J].热处理,2015(2):1.
11 Mandelbrot B B. Stochastic models for the Earth′s relief the shape and the fractal dimension of the coastlines, and the number-area rule for islands[J]. PNAS,1975,72(10):3825.
12 Wang Qiuyan, Liang Zhiqiang, Wang Xibin, et al. Research on fractal behavior of surface topography in precision grinding of monocrystal sapphire[J]. J Mech Eng,2015(19):174(in Chinese).
王秋燕,梁志强,王西彬,等.蓝宝石单晶精密磨削表面形貌的分形行为研究[J].机械工程学报,2015(19):174.
13 Liu Ting, Xu Zongwei, Cao Kexiong, et al. Experimental research on cutting force characteristics and surface quality in micro-milling[J]. Nanotechnol Precis Eng,2015(4):258(in Chinese).
刘婷,徐宗伟,曹克雄,等.微铣削切削力特性及表面质量的实验研究[J].纳米技术与精密工程,2015(4):258.
14 Zhang Meiyun, Jiang Ming, Lu Zhaoqing, et al. Characterization of structure and properties of para-phenylene terephthalamide paper-based composites by fractal dimension[J]. Polym Mater Sci Eng,2015(4):96(in Chinese).
张美云,江明,陆赵情,等.分形维数对芳纶纸基材料结构和性能的表征[J].高分子材料科学与工程,2015(4):96.
15 Kaczor A A, Guixà-González R, Carrió P, et al. Fractal dimension as a measure of surface roughness of G protein-coupled receptors: Implications for structure and function[J]. J Mol Modeling,2012,18(18):4465.
16 Zhuravel′ I M, et al. Measurement of the mean grain size in a metal by using fractal dimensions[J]. Mater Sci,2010,46(3):418.
17 Yexue L I, et al. Developments in calculation theory of fractal dimension of rough surface[J]. Adv Math,2012,41(4):397.
18 Zhao Haiying, Yang Guangjun, Xu Zhengguang. Comparison of calculation methods-based image fractal dimension[J]. Computer Syst Appl,2011,20(3):238(in Chinese).
赵海英,杨光俊,徐正光.图像分形维数计算方法的比较[J].计算机系统应用,2011,20(3):238.
19 Peng Xin, Zhang Yuwei, Qi Wei, et al. Fractal analysis of proteins based on box dimension[J]. Acta Chim Sin,2010(11):1143(in Chinese).
彭鑫,张雨薇,齐崴,等.基于盒维数原理计算蛋白质的分形维数[J].化学学报,2010(11):1143.
20 Kilmister C W, Mandelbrot B B. Fractals: Form, chance and dimension[J]. Math Gazette,1978,62(420):72.
[1] 马骁, 谢雪鹏, 叶雄伟, 何巨鹏, 朱杰. 基于氮气吸附法的钙基地聚合物孔隙结构分形特征[J]. 材料导报, 2019, 33(12): 1989-1994.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed