Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 21110020-6    https://doi.org/10.11896/cldb.21110020
  无机非金属及其复合材料 |
冲磨作用下低热水泥混凝土时变行为及其影响因素研究
姜春萌1,2, 宫经伟1, 蒋林华1,2,*, 陈成2, 唐新军1
1 新疆农业大学水利与土木工程学院,乌鲁木齐 830052
2 河海大学力学与材料学院,南京 211100
Research on Time-varying Behavior and Its Influence Factors of Low Heat Cement Concrete Under Abrasion
JIANG Chunmeng1,2, GONG Jingwei1, JIANG Linhua1,2,*, CHEN Cheng2, TANG Xinjun1
1 College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
2 College of Mechanics and Materials, Hohai University, Nanjing 211100, China
下载:  全 文 ( PDF ) ( 8704KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 低热水泥被广泛应用于水工混凝土,抗冲磨性能是其耐久性设计的重要指标之一。本工作通过水下钢球法试验,研究了低热水泥混凝土磨蚀质量损失、抗冲磨强度、磨蚀深度、体积损失和分形维数等指标随冲磨时间的演化规律,分析了混凝土磨蚀形貌经时变化过程,探明了水泥水化产物组成以及C-S-H凝胶结构对其抗冲磨性能的影响。结果表明:低热水泥浆体中Ca(OH)2含量低,C-S-H凝胶平均链长和聚合度较高,其混凝土抗冲磨性能优于普通水泥混凝土,掺入粉煤灰后抗冲磨强度明显降低,复掺矿渣粉和硅粉对其抗冲磨性能无明显改善。混凝土磨蚀速率与其磨蚀面不规则性有关,表面分形维数随冲磨时间的延长而增大,增至2.6左右渐趋稳定,该指标可较好地表征混凝土早期磨蚀损伤程度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜春萌
宫经伟
蒋林华
陈成
唐新军
关键词:  低热水泥  混凝土  冲磨  磨蚀形貌  分形维数  C-S-H凝胶    
Abstract: Low heat portland cement is widely employed as the main material in hydraulic concrete, where much attention should be paid to the abrasion performance. In this work, mass loss rate, abrasion resistance, abrasion depth, volume loss, fractal dimension of low heat cement concrete at different wearing periods were determined through underwater method. Accordingly, the time-varying process of abrasion morphology of concrete was analyzed, and the impacts of cement hydration products and C-S-H gel structures on the abrasion resistance of concrete were revealed. The results indicate that the abrasion resistance of low heat cement concrete is better than that of ordinary portland cement concrete for its low content of Ca(OH)2 and highly polymerized C-S-H gel, and decreases with the increase of fly ash content, while is not significantly improved after adding slag powder and silica fume. Abrasion rate of concrete is related to its irregularity of wearing surface, whose fractal dimension increases with the extension of wearing duration, and gradually becomes stable when it increases to about 2.6, which could better characterize the early abrasion degree of concrete.
Key words:  low heat cement    concrete    abrasion    abrasion morphology    fractal dimension    C-S-H gel
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TU528  
基金资助: 新疆农业大学高层次人才科研培育计划项目(2522GCCRC);新疆维吾尔自治区优秀青年科技人才培养项目(2020Q017)
通讯作者:  *蒋林华,河海大学力学与材料学院教授、博士研究生导师。1998年获河海大学博士学位。主要从事工程新材料、高性能混凝土与裂缝控制技术等方面的研究工作。主持国家重点研发计划项目课题、国家自然科学基金、重大工程科技项目等100余项,获省部级科技奖6项,申请国家发明专利60项,发表学术论文340余篇,主编、参编专著和规程标准13部。lhjiang@hhu.edu.cn   
作者简介:  姜春萌,新疆农业大学水利与土木工程学院讲师、硕士研究生导师。2021年获新疆农业大学博士学位。主要从事水工混凝土耐久性和先进水泥基材料等方面的研究工作。近年来,在混凝土材料耐久性领域发表论文20余篇,包括Construction and Building Materials、Magazine of Concrete Research、Journal of Materials Research and Technology、KSCE Journal of Civil Engineering、《建筑材料学报》和《长江科学院院报》等。
引用本文:    
姜春萌, 宫经伟, 蒋林华, 陈成, 唐新军. 冲磨作用下低热水泥混凝土时变行为及其影响因素研究[J]. 材料导报, 2023, 37(16): 21110020-6.
JIANG Chunmeng, GONG Jingwei, JIANG Linhua, CHEN Cheng, TANG Xinjun. Research on Time-varying Behavior and Its Influence Factors of Low Heat Cement Concrete Under Abrasion. Materials Reports, 2023, 37(16): 21110020-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110020  或          http://www.mater-rep.com/CN/Y2023/V37/I16/21110020
1 Gong J W, Jiang C M, Tang X J, et al. Construction and Building Materials, 2020, 238, 117666.
2 Zuo S H, Yuan Q, Huang T J, et al. Construction and Building Mate-rials, 2021, 304, 124583.
3 Jiang C M, Gong J W, Tang X J, et al. Water Resources and Power, 2019, 37(8), 114 (in Chinese).
姜春萌, 宫经伟, 唐新军, 等. 水电能源科学, 2019, 37(8), 114.
4 Chen R, Lou X. Water Resources and Hydropower Engineering, 2015, 46(S2), 1 (in Chinese).
陈荣, 娄鑫. 水利水电技术, 2015, 46(S2), 1.
5 Zhou S H. Journal of Yangtze River Scientific Research Institute, 2021, 38(10), 156 (in Chinese).
周世华. 长江科学院院报, 2021, 38(10), 156.
6 Fan Q X, Li W W, Li X Y. Journal of Hydroelectric Engineering, 2017, 36(4), 11 (in Chinese).
樊启祥, 李文伟, 李新宇. 水力发电学报, 2017, 36(4), 11.
7 Chen G X, Liu Y X, Ji G J, et al. Water Resources and Hydropower Engineering, 2021, 52(12), 191 (in Chinese).
陈改新, 刘艳霞, 纪国晋, 等. 水利水电技术, 2021, 52(12), 191.
8 Xin J D, Zhang G X, Liu Y, et al. Journal of Building Engineering, 2020, 101668.
9 Wang L, Yang H Q, Zhou S H, et al. Construction and Building Mate-rials, 2018, 187, 1073.
10 Wang L, Yang H Q, Dong Y, et al. Journal of Cleaner Production, 2018, 203, 540.
11 Liu M Z, Du Y J, Zhu H Y. China Rural Water and Hydropower, 2011(12), 114 (in Chinese).
刘明珍, 杜应吉, 朱红英. 中国农村水利水电, 2011(12), 114.
12 Choi S, Bolander J E. KSCE Journal of Civil Engineering, 2012, 16(5), 771.
13 Hasan M S, Li S S, Zsaki A M, et al. Journal of Materials in Civil Engineering, 2019, 31(10), 4019207.
14 He Z, Chen X R, Zho R X, et al. Journal of Hydroelectric Engineering, 2020, 39(1), 72 (in Chinese).
何真, 陈晓润, 赵日熙, 等. 水力发电学报, 2020, 39(1), 72.
15 Ren L, Xie L Z, Li C B, et al. Advances in Materials Science and Engineering, DOI:/10.1155/2014/814504.
16 Jiang C M, Jiang L H, Chen C, et al. KSCE Journal of Civil Engineering, 2021, 25(6), 2175.
17 Jiang C M, Yu L, Tang X J, et al. Journal of Materials Research and Technology, 2021, 15, 2982.
18 Hu C L, Li Z J. Construction and Building Materials, 2014, 71, 44.
19 Bensted J, Barnes P. Structure and performance of cements, CRC Press LLC, USA, 2001, pp. 113.
20 He Z, Chen X R, Cai X H. Construction and Building Materials, 2019, 197, 91.
[1] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[2] 张洪智, 金祖权, 姜能栋, 葛智, Erik Schlangen, 凌一峰, Branko Šavija, 王铮. 基于分段步进式弹塑性格构模型的混凝土破坏过程细观模拟[J]. 材料导报, 2023, 37(8): 21100198-7.
[3] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[4] 孔丽娟, 梁增蕴, 鹿桓, 赵文静. 重力污水管道混凝土的加速腐蚀模拟研究[J]. 材料导报, 2023, 37(7): 21060148-7.
[5] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[6] 张苑竹, 杨佳铭, 魏纲, 黄森乐. 基于扩散-对流模型的海底混凝土隧道耐久寿命预测[J]. 材料导报, 2023, 37(6): 21060165-5.
[7] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[8] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[9] 李嘉, 秦时髦, 张恒龙. 基于STC-SMA层间性能的沥青混合料设计与评估[J]. 材料导报, 2023, 37(5): 21080246-8.
[10] 宫经伟, 谢刚川, 秦灿, 晋强. 基于电阻率和ζ-电位法的低热硅酸盐水泥早期水化特性[J]. 材料导报, 2023, 37(4): 21050113-9.
[11] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[12] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[13] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[14] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[15] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed