Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21080041-7    https://doi.org/10.11896/cldb.21080041
  无机非金属及其复合材料 |
低温下混凝土劈裂拉伸破坏及尺寸效应试验研究
金浏, 贾立坤, 余文轩, 张仁波*, 杜修力
北京工业大学城市与工程安全减灾教育部重点实验室, 北京 100124
Experimental Investigation for Splitting-tension Failure and Size Effect of Concrete at Cryogenic Temperature
JIN Liu, JIA Likun, YU Wenxuan, ZHANG Renbo*, DU Xiuli
Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 48661KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土材料在低温环境下应用广泛,但是目前对混凝土低温力学性能的研究仍不够充分。为了探讨混凝土材料的低温抗拉性能及尺寸效应规律,设计了边长为100 mm、150 mm和300 mm的立方体混凝土试块,分别在四个温度(T=20 ℃、-30 ℃、-60 ℃和-90 ℃)下进行了劈裂抗拉强度试验,得到了相应的破坏模式、荷载-位移曲线以及劈裂抗拉强度。试验结果表明:在低温劈裂拉伸荷载作用下,混凝土中的骨料颗粒破坏比常温下更为严重;随着温度降低,混凝土材料的劈裂抗拉强度较常温下显著提高;低温下混凝土的劈裂抗拉强度随其尺寸增大而下降,存在明显的尺寸效应现象,且随着温度降低,尺寸效应行为更显著;另外,经典的Type-2尺寸效应律可以较好地描述试验得到的低温条件下混凝土劈裂抗拉强度的尺寸效应规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金浏
贾立坤
余文轩
张仁波
杜修力
关键词:  混凝土材料  低温  抗拉性能  尺寸效应    
Abstract: Concrete materials are applied extensively in cryogenic temperature environment. However, the investigation on the mechanical property of concrete at cryogenic temperature is not enough. To investigate the tensile properties and their size effect law of concrete materials at cryogenic temperature, cube concrete specimens with side lengths of 100 mm, 150 mm and 300 mm were designed and the splitting-tensile tests were carried out at four temperature levels(T=20 ℃,-30 ℃,-60 ℃ and -90 ℃). The corresponding failure patterns, load-deformation curves and splitting-tensile strength were obtained. The test results show that coarse aggregate particles within concrete specimens subjected to splitting-tensile loading at cryogenic temperature fail more severely than the counterparts at room temperature. With the decrease in temperature, the splitting-tensile strength of concrete is significantly higher than that at room temperature. The splitting-tensile strength of concrete at cryogenic tempe-rature has obvious size effect. The size effect behavior is more significant with the decrease of temperature. The classical Type-2 size effect law can well describe the size effect of splitting-tensile strength of concrete at cryogenic temperature.
Key words:  concrete material    cryogenic temperature    tensile property    size effect
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TU528.1  
基金资助: 国家自然科学基金(51822801);国家重点研发计划项目(2018YFC1504302)
通讯作者:  *张仁波,助理研究员,2012年6月毕业于大连海事大学,获得工学学士学位。2015年6月毕业于北京工业大学,获得工学硕士学位。2020年6月毕业于北京工业大学,获得工学博士学位。同年开始从事博士后研究。主要从事温度与强动载作用下混凝土材料与构件的力学性能研究。在国内外期刊发表学术论文40余篇。zhangrenbo99@126.com   
作者简介:  金浏,教授,2006年6月毕业于南京工业大学,获得工学学士学位。2009年6月毕业于南京工业大学,获得工学硕士学位。2014年6月毕业于北京工业大学,获得工学博士学位。2016年4月起入职于北京工业大学任教至今。主要从事多灾耦合作用下工程结构材料、构件静动态力学性能方面的研究工作。在国内外重要期刊发表学术论文200余篇,出版学术专著2部。
引用本文:    
金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
JIN Liu, JIA Likun, YU Wenxuan, ZHANG Renbo, DU Xiuli. Experimental Investigation for Splitting-tension Failure and Size Effect of Concrete at Cryogenic Temperature. Materials Reports, 2023, 37(5): 21080041-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080041  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21080041
1 Jia X W, Lian L, Tu J, et al. Journal of Functional Materials, 2021, 52(12), 12030(in Chinese).
贾兴文, 连磊, 涂俊, 等. 功能材料, 2021, 52(12), 12030.
2 Bažant Z P, Planas J. Fracture and size effect in concrete and other quasibrittle materials, CRC Press, USA, 1998.
3 Du X L, Jin L, Li D, et al. China Civil Engineering Journal, 2017, 50(9), 28(in Chinese).
杜修力, 金浏, 李冬, 等. 土木工程学报, 2017, 50(9), 28.
4 Su J, Fang Z. Journal of Building Structures, 2014, 35(2), 152(in Chinese).
苏捷, 方志. 建筑结构学报, 2014, 35(2), 152.
5 Su J, Fang Z, Yang Z. Journal of Building Structures, 2014, 35(5), 120(in Chinese).
苏捷, 方志, 杨钻. 建筑结构学报, 2014, 35(5), 120.
6 Li D, Jin L, Du X L, et al. Journal of Beijing University of Technology, 2017, 43(8), 1190(in Chinese).
李冬, 金浏, 杜修力, 等. 北京工业大学学报, 2017, 43(8), 1190.
7 Jin Liu, Yu Wenxuan, Du Xiuli. Journal of Materials in Civil Engineering, 2020, 32(10), 04020308.
8 Du M, Jin L, Li D, et al. Engineering Mechanics, 2017, 34(9), 54(in Chinese).
杜敏, 金浏, 李冬, 等. 工程力学, 2017, 34(9), 54.
9 Du X L, Jin L. Size effect in concrete materials and structures, Science Press, China, 2021.
10 Du M, Jin L, Li D, et al. Journal of Beijing University of Technology, 2016, 42(6), 912(in Chinese).
杜敏, 金浏, 李冬, 等. 北京工业大学学报, 2016, 42(6), 912.
11 Bažant Z P. ASCE Journal of Engineering Mechanics, 1984, 110(4), 518.
12 Weibull W. Proceedings of Royal Sweden Institute of Engineering Research, 1939, 153, 1.
13 Weibull W. ASME Journal of Applied Mechanics, 1951, 18(2), 293.
14 Carpinteri A, Ferro G. Materials and Structures, 1994, 27(10), 563.
15 Hoover C G, Bažant Z P. ASCE Journal of Engineering Mechanics, 2014, 140(3), 473.
16 Duan K, Hu X, Wittmann F H. Mechanics of Materials, 2006, 38(S1-2), 128.
17 Jiang Z W, Deng Z L, Zhu X P, et al. Cryogenics, 2018, 94, 5.
18 Zhang N, Liao J, Ji W Z, et al. Journal of the Chinese Ceramic Society, 2014, 42(11), 1404(in Chinese).
张楠, 廖娟, 戢文占, 等. 硅酸盐学报, 2014, 42(11), 1404.
19 Xie J, Li X M, Wu H H. Engineering Mechanics, 2014, 31(S1), 103(in Chinese).
谢剑, 李小梅, 吴洪海. 工程力学, 2014, 31(S1), 103.
20 MacLean T J, Lloyd A. Journal of Cold Regions Engineering, 2019, 33(4), 04019014.
21 Xie J, Yan J B. Structural Concrete, 2018, 19(4), 1235.
22 Yang H T, Duan P J, Wu R D, et al. Materials Reports B:Research Papers, 2020, 34(8), 16043(in Chinese).
杨海涛, 段品佳, 吴瑞东, 等. 材料导报:研究篇, 2020, 34(8), 16043.
23 Li X, Xie J, Wu H H. Engineering Mechanics, 2014, 31(S1), 195(in Chinese).
李响, 谢剑, 吴洪梅. 工程力学, 2014, 31(S1), 195.
24 Jin L, Zhang R B, Du X L, et al. China Civil Engineering Journal, 2021, 54(3), 1(in Chinese).
金浏, 张仁波, 杜修力, 等. 土木工程学报, 2021, 54(3), 1.
25 Jiang Z W, He B, Zhu X P, et al. Construction and Building Materials, 2020, 257, 119456.
26 Wang C X, Xie J, Li H J. Engineering Mechanics, 2011, 28(S2), 182(in Chinese).
王传星, 谢剑, 李会杰. 工程力学, 2011, 28(S2), 182.
27 Shi X D, Ju Y, Ma C, et al. Building Structure, 2016, 46(13), 86(in Chinese).
时旭东, 居易, 马驰, 等. 建筑结构, 2016, 46(13), 86.
28 Lee G C, Shih T S, Chang K. Journal of Cold Regions Engineering, 1988, 2(1), 13.
29 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties:GB/T 50081-2019, China Architecture & Building Press, China, 2019(in Chinese).
中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准:GB/T 50081-2019, 中国建筑工业出版社, 2019.
30 Yu W X, Jin L, Zhang R B, et al. Scientia Sinica Technologica, 2021, 51(3), 305(in Chinese).
余文轩, 金浏, 张仁波, 等. 中国科学:技术科学, 2021, 51(3), 305.
31 Jin L, Yu W X, Li D, et al. International Journal of Mechanical Sciences, 2021, 192, 106130.
32 Jin L, Yu W X, Du X L, et al. Engineering Fracture Mechanics, 2019, 209, 317.
[1] 刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
[2] 赵颖平, 陶平, 李文华, 闵秀博, 余忆玄, 孙天军. 载体改性提高船舶尾气锰铬催化剂的脱硝性能[J]. 材料导报, 2022, 36(Z1): 21080248-6.
[3] 李娜, 陈泽东, 王晶晶, 张凯, 武文斐. 基于氧化铈的低温NH3-SCR催化剂的研究进展[J]. 材料导报, 2022, 36(8): 20080137-8.
[4] 李凌锋, 赵世贤, 郭昂, 司瑶晨, 王战民, 王刚. 利用传统电炉低温烧结致密Si3N4陶瓷[J]. 材料导报, 2022, 36(4): 20090160-6.
[5] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[6] 吴建飞, 袁红梅, 夏林敏, 赵红艳, 林金国, 李吉庆. 低温等离子体改性技术制备功能材料的研究进展[J]. 材料导报, 2022, 36(21): 20100119-9.
[7] 朋小康, 黄兴文, 刘荣涛, 张永文, 张诗洋, 黄锦涛, 闵永刚. 光敏聚酰亚胺:低温固化设计策略[J]. 材料导报, 2022, 36(19): 21030016-9.
[8] 段品佳, 毕晓星, 李宇航, 刘娟红, 周大卫, 程立年, 娄百川. 混凝土超低温力学特性及本构关系研究[J]. 材料导报, 2022, 36(18): 21010199-5.
[9] 宋欢欢, 赵鸣, 崔文正, 刘卓承, 陈华, 杜永胜. SnO2对低温烧结ZnBiMnNbO基高压压敏陶瓷的影响[J]. 材料导报, 2022, 36(17): 21030033-5.
[10] 董万龙, 曹睿, 蒋勇, 杨飞, 黄义芳, 徐晓龙, 陈剑虹. Cr-Mo-V耐热钢焊条电弧焊焊缝金属低温冲击韧性研究[J]. 材料导报, 2022, 36(15): 20120001-5.
[11] 王顺平, 李春燕, 李金玲, 王海博, 寇生中. 块体非晶合金的低温性能研究进展[J]. 材料导报, 2022, 36(13): 20100255-8.
[12] 陈飞, 张林艳, 封基良, 马永, 赵雁斌. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(z2): 127-137.
[13] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[14] 宋云连, 高盼, 吕鹏. 温拌沥青低温性能及其微观特性机理研究[J]. 材料导报, 2021, 35(Z1): 251-257.
[15] 孙万兴, 郭少青, 董弋, 刘洋, 高丽兵, 卫贤贤, 曹艳芝, 董红玉, 李鑫. 低温固化银浆的制备及树脂粘结相对其性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 402-405.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed