Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 21030033-5    https://doi.org/10.11896/cldb.21030033
  无机非金属及其复合材料 |
SnO2对低温烧结ZnBiMnNbO基高压压敏陶瓷的影响
宋欢欢1, 赵鸣1,*, 崔文正1, 刘卓承1, 陈华2, 杜永胜2
1 内蒙古科技大学白云鄂博矿多金属资源综合利用重点实验室,内蒙古 包头 014010
2 内蒙古科技大学理学院,内蒙古 包头 014010
Effect of SnO2 on the Low-temperature Sintered ZnBiMnNbO Based Varistor Ceramics for High-voltage Application
SONG Huanhuan1, ZHAO Ming1,*, CUI Wenzheng1, LIU Zhuocheng1, CHEN Hua2, DU Yongsheng2
1 Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
2 School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 6907KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用传统固相烧结工艺,在875 ℃低温保温3 h条件下制备了0%~0.75%(摩尔分数)SnO2掺杂ZnBiMnNbO基压敏陶瓷。采用高精度分析天平、XRD、SEM、EDS及高精度源表等研究了SnO2含量变化对所制备材料显微结构及电学特性的影响。结果表明:在所研究范围内,SnO2含量升高增大了材料的相对密度,并促进含铌Bi2Sn2O7焦绿石新相的形成。因此,材料的平均晶粒直径由4.38 μm减小至4.04 μm,压敏电压由727 V/mm升高到1 024.37 V/mm,非线性系数由32.37提升至52.64,漏电流密度由13.5 μA/cm2降低至1.55 μA/cm2。研究结果可为低成本、高非线性、高压压敏陶瓷的研制提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋欢欢
赵鸣
崔文正
刘卓承
陈华
杜永胜
关键词:  ZnBiMnNbO基压敏陶瓷  SnO2  低温烧结  高压    
Abstract: 0%—0.75% (mole fraction) SnO2 doped ZnBiMnNbO based varistor ceramics were produced by the traditional solid-state sintering procedure at low temperature of 875 ℃ for 3 h. The effect of SnO2 concentration variation on the microstructure and properties of the fabricated material was investigated by high precision scale, XRD, SEM, EDS and high-precision power-source unit. The result shows that the increment of SnO2 within the studied range can effectively improve the relative density and the formation of the Nb-containing Bi2Sn2O7 pyrochlore as the new secondary phase. The latter microstructural change leads the average grain size to decrease from 4.38 μm to 4.04 μm, and the breakdown voltage to increase from 727 V/mm to 1 024.37 V/mm. Meanwhile, the nonlinear coefficient increases from 32.37 to 52.64, and the leakage current density decreases from 13.5 μA/cm2 to 1.55 μA/cm2. The results of this study can provide a good reference to the development of high-voltage varistors with high nonlinearity at low cost.
Key words:  ZnBiMnNbO-based varistor ceramic    SnO2    low-temperature sintering    high-voltage
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TN304.93  
  TN379  
基金资助: 内蒙古自然科学基金(2020MS05037)
通讯作者:  *philip@imust.edu.cn   
作者简介:  宋欢欢,2021年6月毕业于内蒙古科技大学,获得材料工程硕士学位。毕业后进入潮州三环(集团)股份有限公司,任职工程师,主要从事陶瓷电子元器件烧结工艺改进工作。
赵鸣,内蒙古科技大学教授。2007年7月毕业于西北工业大学材料学专业,获博士学位。主要从事功能陶瓷及先进玻璃陶瓷的制备,表征以及器件开发。以第一作者在国内外重要期刊发表论文30多篇、合作论文100余篇,获发明专利5项。出版著作《科技论文写作基础》(科学出版社,2014)。
引用本文:    
宋欢欢, 赵鸣, 崔文正, 刘卓承, 陈华, 杜永胜. SnO2对低温烧结ZnBiMnNbO基高压压敏陶瓷的影响[J]. 材料导报, 2022, 36(17): 21030033-5.
SONG Huanhuan, ZHAO Ming, CUI Wenzheng, LIU Zhuocheng, CHEN Hua, DU Yongsheng. Effect of SnO2 on the Low-temperature Sintered ZnBiMnNbO Based Varistor Ceramics for High-voltage Application. Materials Reports, 2022, 36(17): 21030033-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030033  或          http://www.mater-rep.com/CN/Y2022/V36/I17/21030033
1 Gupta T K. Journal of the American Ceramic Society, 1990, 73(7), 1817.
2 Matsuoka M. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1971, 10(6), 736.
3 Meng P, Zhao X, Fu Z, et al. Journal of Alloys and Compounds, 2019, 789(15), 948.
4 Nahm C W. Ceramics International, 2014, 40, 2477.
5 Roy S, Das D, Roy T K. Journal of Alloys and Compounds, 2018, 749(15), 687.
6 Zhao M, Wang Y, Sun T, et al. Journal of Materials Science:Materials in Electronics, 2020, 31(11), 8206.
7 Zhao M, Song H, Cui W, et al. Ceramics International, 2021, 47(16), 23362.
8 Bai H, Li M, Xu Z, et al. Journal of the European Ceramic Society, 2017, 37(13), 3965.
9 Ma S, Xu Z, Chu R, et al. Ceramics International, 2014, 40, 10149.
10 Rečnik A, Daneu N, Bernik S. Journal of the European Ceramic Society, 2007, 27(4), 1999.
11 Nahm C W. Ceramics International, 2009, 35(2), 541.
12 Xu D, Xiaonong C, Guoping Z, et al. Ceramics International, 2011, 37(3), 701.
13 Morris W G. Journal of the American Ceramic Society, 1973, 56(7), 360.
14 Han J, Mantas P Q, Senos A M R. Journal of the European Ceramic So-ciety, 2000, 20(16), 2753.
15 Asokan T, Iyengar G N K, Nagabhushana G R. Journal of Materials Science, 1987, 22, 1019.
16 Daneu N, Rečnik A, Bernik S, et al. Journal of the American Ceramic Society, 2000, 83(12), 3165.
17 Mei Y, Pandey S, Long W, et al. Journal of the European Ceramic Society, 2020, 40(4), 1330.
18 Zhao M, Wang Y, Sun T, et al. Journal of Materials Science: Materials in Electronics, 2020, 31(11), 8206.
19 Xu D, Wu J, Jiao L, et al. Journal of Rare Earths, 2013, 31(2), 158.
20 Sendi R K, Munshi A, Mahmud S. Superlattices and Microstructures, 2014, 69, 212.
21 Roth R S, Waring J L. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 1962, 66A(6), 451.
22 Wang P L, Liu J C, Cao G B, et al. Journal of the Chinese Ceramic So-ciety, 1982, 10(2), 141(in Chinese).
王佩玲,刘建成,曹国斌,等.硅酸盐学报, 1982, 10(2), 141.
23 Zhao M, Wu X L, Li H S, et al. Journal of Functional Materials and Devices, 2012, 18(6), 459(in Chinese).
赵鸣,吴晓亮,李海松,等.功能材料与器件学报, 2012, 18(6), 459.
24 Ma S, Xu Z, Chu R, et al. Ceramics International, 2015, 41(9), 12490.
25 Bernik S, Daneu N. Journal of the European Ceramic Society, 2001, 21, 1879.
26 Clarke D R. Journal of the American Ceramic Society, 1999, 82(3), 485.
27 Takada M, Yoshikado S. IEEJ Transactions on Fundamentals and Mate-rials, 2007, 127(10), 621.
28 Stucki F, Greuter F. Applied Physics Letters, 1990, 57(5), 446.
29 Tikhomirova E L, Savel'ev Y A, Gromov O G. Inorganic Materials, 2019, 55(4), 405.
30 Feng H, Peng H, Fu X, et al. Journal of Alloys and Compounds, 2011, 509(25), 7175.
31 Zhao M, Wang Y, Li X, et al. Ceramics International, 2020, 46(13), 20923.
32 Chen G, Li J, Chen X, et al.Journal of Materials Science: Materials in Electronics, 2015, 26(4), 2389.
33 Ruan X, Ren X, Zhou W, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(13), 12113.
34 Peiteado M, Cruz A M, Reyes Y, et al.Ceramics International, 2014, 40(8), 13395.
[1] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[2] 关嘉怡, 张刚华, 曾涛, 白建峰, 顾卫华. 利用高压手段调控铁电材料结构与性能的研究进展[J]. 材料导报, 2022, 36(12): 20110057-8.
[3] 翟建明, 商学欣, 王汉奎, 徐彤, 于海洋, 孙永辉, 柳旺. 基于4130X材料的高压氢脆评价方法研究[J]. 材料导报, 2021, 35(z2): 437-442.
[4] 刘晓欢, 李彦生, 满意, 王金辉, 徐瑞. 高压扭转制备的Mg-Sm-Ca合金组织演变及时效硬化行为[J]. 材料导报, 2021, 35(6): 6120-6125.
[5] 廖磊, 吕承航, 黄维刚, 秦霸. 电沉积法制备纳米SnO2及其应用综述[J]. 材料导报, 2020, 34(Z2): 57-62.
[6] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[7] 刘壮, 陈建林, 彭卓寅, 陈荐. SnO2应用于钙钛矿太阳电池电子传输层的研究进展[J]. 材料导报, 2020, 34(21): 21072-21080.
[8] 程灵, 韩钰, 马 光, 孟利, 杨富尧, 陈新, 董瀚. 特高压直流换流阀饱和电抗器用超薄取向硅钢涂层制备与性能评估[J]. 材料导报, 2020, 34(18): 18139-18144.
[9] 杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
[10] 翟建明, 徐彤, 王红霞, 马广青, 商学欣. 316L与16Mn材料抗高压氢脆性能研究[J]. 材料导报, 2019, 33(Z2): 497-500.
[11] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[12] 穆巴拉克·木里提江, 艾尼瓦尔·吾术尔, 王静, 鲁雅荣. 碳酸钡在高温及高压下的相变行为[J]. 材料导报, 2019, 33(24): 4062-4065.
[13] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[14] 王鹏飞, 邓宇, 郝丽梅, 邓橙, 赵蕾, 张新奇, 朱孟府. 铋掺杂二氧化锡/炭膜电催化膜的制备及表征[J]. 材料导报, 2019, 33(18): 3016-3020.
[15] 周超, 王辉, 欧阳柳章, 朱敏. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117-126.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed