Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20110206-6    https://doi.org/10.11896/cldb.20110206
  无机非金属及其复合材料 |
电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究
陈刚1, 熊施权1, 吕洪2, 郝传璞2
1 湖南大学材料科学与工程学院,长沙 410082
2 同济大学新能源汽车工程中心,上海 201804
Investigation of Mesoporous Vanadium Sb and Co Doped SnO2 Support for Anode Catalyst of Electrolyzer
CHEN Gang1, XIONG Shiquan1, LYU Hong2, HAO Chuanpu2
1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
2 Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China
下载:  全 文 ( PDF ) ( 12763KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以十六烷基三甲基溴化铵(CTAB)为模板剂,水热法制备介孔SnO2载体,以Adams法制备40%IrO2(质量分数)负载型催化剂,采用BET、XPS、XRD、TEM等手段对载体及催化剂结构与性能进行表征与分析;然后用Sb、Co掺杂SnO2载体并合成催化剂,探究其对载体及催化剂结构与性能的影响。结果表明:当水热反应时间为24 h时,获得的载体最有利于催化剂负载,并获得最优性能。掺杂有效改善了SnO2质子传递,当 Sb掺杂SnO2时,其催化剂电化学循环性能不断增高,Sb掺杂量为20%(摩尔分数,下同)时,催化剂获得最好电化学性能;而当 Co掺杂SnO2时,其催化剂电化学循环性能降低,Co掺杂量为5%时,催化剂获得最好性能,其电化学活性面积最大时,伏安电荷量Q*为1 478 mC·(cm2·mg)-1。最后对不同掺杂元素单电池进行测试,Co掺杂的SnO2对IrO2单电池性能提升最大,在1.0 A/cm2测试条件下析氧过电位为1.884 V。研究发现掺杂后催化剂性能与掺杂离子的价态及尺寸有直接关系,离子价态差越大,催化性能越高。Sb离子尺寸高于Sn4+,性能随掺杂量增大而提高;Co离子尺寸低于Sn4+,性能随掺杂量增大而降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈刚
熊施权
吕洪
郝传璞
关键词:  水热法  介孔SnO2  掺杂  氧化铱    
Abstract: The mesoporous SnO2 support was prepared by hydrothermal method using cetyltrimethylammonium bromide (CTAB) as template, and the catalyst supported was prepared by Adams method, and the dosage of IrO2 was 40% (mass fraction). The structures and properties of the supporters and catalysts were characterized and analyzed by BET, XPS, XRD, and TEM. Then, Sb and Co doped SnO2 carriers were used to synthesize the catalyst to explore its influence on the structure and performance of the supporters and catalysts. The results show that when the hydrothermal reaction time is 24 h, the obtained carrier is most beneficial to the catalyst and obtain the optimal performance. Simultaneously, Sb and Co doped SnO2 supporters are used to synthesize the catalyst, and the effects of ion valence state and ion size on the structure and properties of the supporters and catalysts are investigated. Doping with Sb and Co can effectively improve the proton transfer of SnO2. When Sb is doped with SnO2, the electrochemical cycle performance of the catalysts continues to increase. When the doping amount is 20%(mole fraction, the same below), the catalyst obtains the best electrochemical performance; and with the increases of Co doping, the electrochemical cycle performance of the catalysts is reduced. When the doping amount is 5%, the electrochemical active area is the largest, the voltammetric charge Q* is equal to 1 478 mC·(cm2·mg)-1. Finally, by testing the performance of single cell with different doping elements to research: Co doped SnO2 has the greatest improvement on the performance of IrO2 single cell. The anodic overpotential for oxygen evolution was 1.884 V under the test conditions of 1.0 A/cm2. The performances of the doped catalyst are directly related to the valence state and ion size of the doped ion. The larger the valence difference between ions, the higher the catalytic performance of the catalysts. The ionic sizes of Sb are larger than that of Sn4+, and the performance improves with the increase of doping amount; and the average ionic size of CO is smaller than that of Sn4+, and the perfo-rmance decreases with the increase of doping amount.
Key words:  electrolysis water    mesoporous SnO2    doping    IrO2
出版日期:  2022-02-10      发布日期:  2022-02-10
ZTFLH:  O643  
基金资助: 国家自然科学基金(21306141)
通讯作者:  chengang811@163.com   
作者简介:  陈刚,湖南大学,教授,博士研究生导师。2005年6月获得湖南大学材料加工工程博士学位,先后主持或参与了国家“863”、国家科技攻关项目、国家自然科学基金项目、部省级重点项目等40余项。在国内外学术期刊上发表论文80余篇,授权国家发明专利10余项,主要研究方向包括:快速凝固与喷射沉积、粉末冶金及金属注射成形、高熵合金及其涂层等。
引用本文:    
陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
CHEN Gang, XIONG Shiquan, LYU Hong, HAO Chuanpu. Investigation of Mesoporous Vanadium Sb and Co Doped SnO2 Support for Anode Catalyst of Electrolyzer. Materials Reports, 2022, 36(3): 20110206-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110206  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20110206
1 Wang P, Guo J Z, Wang X Y. Chemical Industry and Engineering, 2015,32(2),50(in Chinese).
王盼,郭建钊,王宇新.化学工业与工程, 2015,32(2),50.
2 Lu P W T, Srinivasan S. Journal of Applied Electrochemistry, 1979, 9(9), 269.
3 Papaderakis A, Tsiplakides S. Journal of Electroanalytical Chemistry, 2015, 57,216.
4 Hua Z C, Meng Z C, Lian K.Applied Surface Science, 2018, 428,861.
5 Chen G, Xue M C.Journal of Physical Chemistry B, 2002, 106(17), 4364.
6 Gurrola M P, Guerra B M, Álvarez C L. Journal of Power Sources, 2013, 243(6),826.
7 Vinod K P, Mohammed M, Sivakumar P. Journal of Power Sources, 2014,269,451.
8 Li G. Physical Chemistry Chemical Physics Pccp, 2013, 15(8), 2858.
9 Pauli C P D. Electroanalytical Chemistry, 1995,396,161.
10 Strasser P. Meeting Abstracts, 2015,2(37),1458.
11 Xu J Y, Liu G Y, et al. Electrochim Acta, 2012,59(1),105.
12 Yang Q W. Preparation and properties of mesoporous TiO2. Master's Thesis, Central South University, China, 2008 (in Chinese).
杨秋文.介孔二氧化钛的制备与性能研究. 硕士学位论文,中南大学, 2008.
13 Wu X, Keith S, Suddhasatwa B. Journal of Power Sources, 2010, 196(21),8918.
14 Xu Wu, Keith Scott. International Journal of Hydrogen Energy, 2011, 10(36), 5806.
15 Gurrola M P, Gutiérrez J, Rivas S. International Journal of Hydrogen Energy, 2014,39(29),763.
16 Riggs W H, Davis L E, Moulder J F. Handbook of X-Ray photoelectron spectroscopy. USA,Perkin Elmer Co-operation, 1979, PP.78.
17 Mazur P, Polonsky J,Paidar M, et al. International Journal of Hydrogen Energy, 2012,37(17),12081.
18 Sun Q Z. Preparation and properties of chip-typed PTCR fine-grained ceramics.Master's Thesis, Huazhong University of Science and Technology, China, 2008 (in Chinese).
孙庆祝.片式PTCR细晶陶瓷的制备及性能研究. 硕士学位论文, 华中科技大学,2008.
19 Caroline R, Eric M. Applied Catalysis B: Environmental,2016,182(9),123.
20 Bao S L, An L, Fu X G. Transactions of Nonferrous Metals Society of China, 2006,16(5),1193.
21 Chen X Z, Hong T. Journal of Electroanalytical Chemistry, 2013, 32(8),269.
22 IsidorssonC. Granqvist G. Journal of Applied Physics, 1996, 80(4), 2367.
23 Marshall A, Børresen B,Hagen G. Russian Journal of Electrochemistry, 2006, 42(10), 1134.
[1] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[2] 毛晓璇, 冯柳, 吴立清, 辛伍红, 牛金叶. 多孔炭基复合材料用作碱金属离子电池负极的研究进展[J]. 材料导报, 2023, 37(S1): 23020009-12.
[3] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[4] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[5] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[6] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[7] 田娅, 马立文, 席晓丽. 电沉积法制备含钼合金的研究进展[J]. 材料导报, 2023, 37(3): 21030193-7.
[8] 刘电超, 金国, 井勇智, 崔秀芳, 房永超, 陈卓, 王薪贺. 稀土氧化物掺杂对YSZ热障涂层热物理性能影响的研究进展[J]. 材料导报, 2023, 37(24): 22040242-6.
[9] 裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
[10] 孙慧慧, 周子吉, 曹文, 王群, 周忠华, 黄悦. 玻璃表面梯度多孔减反射膜层的水热制备及水刻蚀剂添加Na2HPO4对膜层结构的影响[J]. 材料导报, 2023, 37(22): 22060210-7.
[11] 王娅鸽, 王彬彬, 杨德威, 李瑶. 氮掺杂柔性块体多孔碳的制备及对CO2/CH4的吸附分离研究[J]. 材料导报, 2023, 37(22): 22050326-9.
[12] 马江微, 翟海潮, 张紫薇, 胡季帆. MOFs衍生的Sn掺杂In2O3材料的制备及氯气气敏性能[J]. 材料导报, 2023, 37(16): 23040030-6.
[13] 陈善登, 白清顺, 窦昱昊, 郭万民, 郭永博, 杜云龙. 金刚石表面生长石墨烯的纳观尺度机理研究进展[J]. 材料导报, 2023, 37(16): 21110098-7.
[14] 周靓, 何文远, 陈隆源, 朱红伟, 陈丽娟, 凌辉, 郑学军. Sn、P共掺杂MoS2纳米花的制备及电催化析氢性能研究[J]. 材料导报, 2023, 37(15): 22020118-7.
[15] 贾少培, 宗泳吉, 黄权, 李其松, 张茜, 李彩玉, 王志新, 穆云超. 蛋白质衍生氮掺杂碳用作电化学能源材料的研究进展[J]. 材料导报, 2023, 37(15): 21100210-14.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed