Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 23040030-6    https://doi.org/10.11896/cldb.23040030
  无机非金属及其复合材料 |
MOFs衍生的Sn掺杂In2O3材料的制备及氯气气敏性能
马江微1,2,*, 翟海潮1,2, 张紫薇1,2, 胡季帆1,2,*
1 太原科技大学材料科学与工程学院,太原 030024
2 太原科技大学磁电功能材料及应用山西省重点实验室,太原 030024
Preparation of Sn Doped In2O3 Materials Derived from MOFs and Their Gas-sensing Properties for Chlorine
MA Jiangwei1,2,*, ZHAI Haichao1,2, ZHANG Ziwei1,2, HU Jifan1,2,*
1 School of Materials Science & Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 Shanxi Province Key Laboratory of Magnetic and Electric Functional Materials and Their Applications, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 7812KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用简单的水热法制备了Sn掺杂的有机框架化合物(MOFs),再煅烧衍生出Sn掺杂In2O3 (Sn-In2O3)气敏材料。表征结果表明,材料的形貌是中空微米棒且材料的比表面积较大、Sn元素成功被掺杂,材料表面的氧空位浓度也较大。气敏测试结果表明,Sn-In2O3中空微米棒材料对低浓度Cl2具有较大的灵敏度,理论最低检测限低至0.37×10-9。通过气敏机理分析,其优良的Cl2气敏性能主要归因于材料的中空结构、大的比表面积和丰富的氧空位,这主要来源于MOFs模板法的制备和Sn元素的掺杂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马江微
翟海潮
张紫薇
胡季帆
关键词:  Sn掺杂  氧化铟  氧空位  氯气  气体传感器    
Abstract: Sn-doped indium oxide hollow micron-rods (Sn-In2O3 HMs) were prepared by calcination of Sn-doped organic framework compounds (MOFs) which prepared by a simple hydrothermal method. From the results of characterization, the morphology of Sn-In2O3 was hollow micron-rod and the specific surface area was large. In addition, Sn element was successfully doped and Sn-In2O3 HMs had abundant oxygen vacancy. The investigation on the gas-sensing performance revealed that the Sn-In2O3 HMs sensors could detect low concentration of chlorine (Cl2) and displayed a low detection limit (0.37×10-9). According to the analysis of gas-sensing mechanism, the excellent Cl2 sensing properties were ascribed to the hollow structure, large specific surface area and abundant oxygen vacancy. Those mainly derived from the preparation of MOFs template method and the doping of Sn element.
Key words:  Sn-doping    indium oxide    oxygen vacancy    chlorine    gas sensor
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TB34  
基金资助: 国家自然科学基金 (62201376);山西省基础研究计划资助项目 (20210302124104);优秀来晋博士科研资助 (20212043);山西省高等学校科技创新项目资助 (2021L296);太原科技大学科研启动基金资助 (20202055)
通讯作者:  *马江微,太原科技大学材料科学与工程学院讲师、硕士研究生导师。2012年唐山师范学院化学本科毕业,2015年空军军医大学药物化学专业硕士毕业,2020年西北工业大学材料学专业博士毕业。目前主要从事气敏材料及器件等方面的研究工作。以第一作者发表论文7篇,包括Sensors and Actuators B:Chemical、ACS Sustainable Chemistry & Engineering、Journal of Hazardous Materials、Ceramics International等。jiangweima@tyust.edu.cn
胡季帆,太原科技大学材料科学与工程学院特聘教授、长江学者、博士研究生导师。1985 年山东大学物理学专业本科毕业,1988 年中科院物理研究所凝聚态物理专业硕士毕业,1993 年中科院物理研究所凝聚态物理专业博士毕业。目前主要从事气敏、储氢、永磁等稀土功能材料的研究工作。发表论文200余篇,包括Sensors and Actuators B:Chemical、Applied Surface Science、Renewable Energy、Journal of Rare Earths等。曾获教育部科技进步一等奖。2019064@tyust.edu.cn   
引用本文:    
马江微, 翟海潮, 张紫薇, 胡季帆. MOFs衍生的Sn掺杂In2O3材料的制备及氯气气敏性能[J]. 材料导报, 2023, 37(16): 23040030-6.
MA Jiangwei, ZHAI Haichao, ZHANG Ziwei, HU Jifan. Preparation of Sn Doped In2O3 Materials Derived from MOFs and Their Gas-sensing Properties for Chlorine. Materials Reports, 2023, 37(16): 23040030-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040030  或          http://www.mater-rep.com/CN/Y2023/V37/I16/23040030
1 Li P, Fan H. Materials Science in Semiconductor Processing, 2015, 29, 83.
2 Wang D, Hu P, Xu J, et al. Sensors and Actuators B: Chemical, 2009,140(2), 383.
3 Patil D R, Patil L A. Sensors & Actuators B Chemical, 2007,123(1), 546.
4 Bender F, Kim C, Mlsna T, et al. Sensors and Actuators B: Chemical, 2001,77(1), 281.
5 Zhang Y, Song W, Zhang S, et al. Materials Reports, 2022, 36(23), 21010015 (in Chinese).
张亦文, 宋晚晴, 张士雨, 等. 材料导报, 2022, 36(23), 21010015.
6 Ma J, Fan H, Tian H, et al. Sensors and Actuators B: Chemical, 2018,262, 17.
7 Li P, Cai Y, Fan H. RSC Advances, 2013, 3(44), 22239.
8 Wang L, Lou Z, Fei T, et al. Journal of Materials Chemistry, 2011, 21(48), 19331.
9 Zhao J, Shao Q, Ge S, et al. The Chemical Record, 2020, 20(7), 710.
10 Sun J K, Xu Q. Energy & Environmental Science, 2014, 7(7), 2071.
11 Liu W, Chen X, Zhi W, et al. Materials Reports, 2023, 37(5), 21030231 (in Chinese).
刘维赛, 陈晓怡, 智文科,等. 材料导报, 2023, 37(5), 21030231.
12 Wang M, Shen Z, Zhao X, et al. Journal of Hazardous Materials, 2019, 371, 352.
13 Jin Z, Wang C, Wu L, et al. Sensors and Actuators B: Chemical, 2023, 377, 133058.
14 Li P, Fan H, Cai Y, et al. CrystEngComm, 2014, 16(13), 2715.
15 Liang R, Huang R, Wang X, et al. Applied Surface Science, 2019, 464, 396.
16 Seo W S, Jo H H, Lee K, et al. Advanced Materials, 2003, 15(10), 795.
17 Pan D, Ge S, Zhang X, et al. Dalton Transactions, 2018, 47(3), 708.
18 Liu Y, Liu J, Pan Q, et al. Sensors and Actuators B: Chemical, 2022, 352(1), 131001.
19 Liu F, Huang G, Wang X, et al. Sensors and Actuators B: Chemical, 2018, 277, 144.
20 Xun H, Zhang Z, Yu A, et al. Sensors and Actuators B: Chemical, 2018, 273, 983.
21 Ma J, Fan H, Zheng X, et al. Journal of Hazardous Materials, 2020, 387, 122017.
22 Tu N, Van Bui H, Trung D Q, et al. Journal of Alloys and Compounds, 2019, 791, 722.
23 Ri J, Li X, Shao C, et al. Sensors and Actuators B: Chemical, 2020, 317, 128194.
24 Kundu S, Kumar A. Journal of Alloys and Compounds, 2019, 780, 245.
25 Zhou J Y, Bai J L, Zhao H, et al. Sensors and Actuators B: Chemical, 2018, 265, 273.
26 Sing K S W. Pure and Applied Chemistry, 1985, 57(4), 603.
27 Scott R W J, Yang S M, Chabanis G, et al. Advanced Materials, 2001, 13(19), 1468.
28 Spjotvoll E, Martens H, Naes T. Applied Statistics, 1991, 40, 341.
29 Peng L, Zhao Q, Wang D, et al. Sensors and Actuators B: Chemical, 2009, 136(1), 80.
30 Kumar R, Al-Dossary O, Kumar G, et al. Nano-Micro Letters, 2015, 7(2), 97.
31 Miyata T, Hikosaka T, Minami T. Sensors and Actuators B: Chemical, 2000, 69(1), 16.
32 Tamaki J, Naruo C, Yamamoto Y, et al. Sensors and Actuators B: Chemical, 2002, 83(1), 190.
33 Chaparadza A, Rananavare S B. Nanotechnology, 2008, 19(24), 245501.
34 Van Dang T, Duc Hoa N, Van Duy N, et al. ACS Applied Materials & Interfaces, 2016, 8(7), 4828.
35 Wang D, Hu P, Xu J, et al. Sensors and Actuators B: Chemical, 2009, 140(2), 383.
[1] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[2] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[3] 唐明响, 陈良, 祁核, 孙胜东, 刘辉, 陈骏. 缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展[J]. 材料导报, 2022, 36(2): 20090329-6.
[4] 李龙泰, 张春杰, 罗学彬, 杨彬, 郭利民. 用于CO2催化加氢In2O3基催化剂的研究进展[J]. 材料导报, 2021, 35(21): 21071-21078.
[5] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[6] 黄俊, 李荣兴, 谢刚, 田林, 杨妮, 俞小花, 李威. 金红石型TiO2(110)表面吸附TiCl4的微观机理[J]. 材料导报, 2018, 32(20): 3524-3530.
[7] 金鹤, 周灵平, 朱家俊, 符立才, 杨武霖, 李德意. 空间太阳电池玻璃盖板表面超薄ITO防静电层的设计及制备工艺*[J]. 《材料导报》期刊社, 2017, 31(17): 158-162.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed