SnO2 Thin Film Prepared by Atomic Layer Deposition Technology and Its Effect on the Performance of Perovskite Solar Cells
MING Shuaiqiang1,2,3, WANG Zhejia3, WU Lujie1,4, FENG Jiaheng3, GAO Yazeng1,2, LU Weier1,2, XIA Yang1,2
1 Microelectronic Instrument and Equipment Research Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China 2 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 101407, China 3 Jiaxing Kemin Electronic Equipment Technology Co., Ltd., Jiaxing 314022,Zhejiang, China 4 School of Science,Beijing Jiaotong University, Beijing 100044, China
Abstract: In this work, tin oxide (SnO2) thin film was prepared through atomic layer deposition technology with monocrystalline silicon as substrate, te-trakis (dimethylamino) tin and water as the precursor sources. Its optical, electrical properties and application in perovskite solar cell devices were characterized. Through adjusting the temperature of substrates, the effect of deposition temperature on SnO2 film deposition rate, and electrical and optical properties were studied in detail, and the performance of perovskite solar cells was analyzed. The results indicate that with tetrakis (dimethylamino) tin and water as precursors, the deposition rate decreases gradually with the increase of temperature, and the atomic layer deposition temperature window is between 120 ℃ and 250 ℃; the refractive index also increases with temperature. As the temperature increases gradually, the band gap decreases; the higher the deposition temperature is, the higher the surface oxygen vacancy concentration is. The SnO2 thin film deposited at 160 ℃ was used to prepare the perovskite solar cell device, which obtained a champion efficiency (18.68%), with a cut-off voltage of 1.077 V, a short-circuit current density of 23.67 mA/cm2 and a fill factor of 73.3%. The device has less hysteresis effect.
明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
MING Shuaiqiang, WANG Zhejia, WU Lujie, FENG Jiaheng, GAO Yazeng, LU Weier, XIA Yang. SnO2 Thin Film Prepared by Atomic Layer Deposition Technology and Its Effect on the Performance of Perovskite Solar Cells. Materials Reports, 2022, 36(7): 20110236-6.
1 Matthias B, Ulrike D. Progress in Surface Science, 2005, 79, 47. 2 Cheng X B, Zhang R, Zhao C Z, et al. Chemical Reviews, 2017,117(15), 10403. 3 Yeaju J, Hahoon L, Kookrin C. AIP Advances, 2020, 10, 035011. 4 Li Y, Yang F, Wang Y, et al. Solar RRL, 2020, 4(7), 2000218. 5 Jeong J, Choi S P, Chang C I, et al. Solid State Communications, 2003, 127(9-10), 595. 6 Korotcenkov G, Brinzari V, Schwank J, et al. Sensors and Actuators B: Chemical, 2001, 77(1-2), 244. 7 Haider A J, Shaker S S, Mohammed A H. Energy Procedia, 2013, 36,776. 8 Aravindan V, Jinesh K B, Prabhakar R R, et al. Nano Energy, 2013, 2(5), 720. 9 Lu W E, Dong Y B, Li C B, et al. Journal of Inorganic Materials, 2014, 29(4), 345(in Chinese). 卢维尔,董亚斌,李超波,等. 无机材料学报, 2014, 29(4), 345. 10 Liu Y F, Li L X, Wang Y Y, et al. Journal of Inorganic Materials, 2017, 32(7), 751(in Chinese). 刘彦峰,李磊削,王韫宇,等.无机材料学报, 2017, 32(7), 751. 11 Hu H, Dong B H, Wan L, et al.Materials Reports A:Review Papers, 2016,30(12),9(in Chinese). 胡航,董兵海,万丽,等.材料导报:综述篇, 2016,30(12),9. 12 Cremers V, Puurunen R, Dendooven J.Applied Physics Reviews, 2019, 6(2), 021302. 13 Han P, Lai T C, Wang M, et al. Applied Surface Science, 2019, 467-468, 423 14 Meng L, You J B, Yang Y. Nature Communications, 2018, 9, 5265. 15 Cai M L, Wu Y Z, Chen H, et al.Advanced Science, 2017, 4,1600269. 16 Ru P B, Bi E B, Chen H. Materials Reports B:Research Papers,2020,34(9),18003(in Chinese). 茹鹏斌,毕恩兵,陈汉.材料导报:研究篇,2020,34(9),18003. 17 Roose B, Baena J P C, Gödel K C, et al. Nano Energy, 2016, 30, 517. 18 Kim H S, Im S H, Park N G. The Journal of Physical Chemistry C, 2014, 118(11), 5615. 19 Kim J, Kim G, Kim T K, et al. Journal of Materials Chemistry A, 2014, 2(41), 17291. 20 Song J, Zheng E, Wang X F, et al. Solar Energy Materials and Solar Cells, 2016, 144, 623. 21 Song J, Zheng E, Bian J, et al. Journal of Materials Chemistry A, 2015, 3(20), 10837. 22 Qin X, Zhao Z, Wang Y, et al. Journal of Semiconductors, 2017, 38(1), 011002. 23 Baena J P C, Steier L, Tress W, et al. Energy & Environmental Science, 2015, 8(10), 2928. 24 Palmstrom A F, Raiford J A, Prasanna R, et al.Advanced Energy Mate-rials, 2018, 8(23), 1800591. 25 Wu W Q, Chen D, Cheng Y B, et al.Solar RRL, 2017, 1(11), 1700117. 26 Xiao K, Lin R, Han Q, et al.Nature Energy, 2020, 5(11),870 27 Elam J W, Baker D A, Hryn A J, et al.Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2008, 26(2), 244. 28 Jeong S, Seo S, Park H, et al.Chemical Communications, 2019, 55(17), 2433. 29 Wang Y, Kang K M, Kim M, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2018, 36(3), 031504. 30 Wang J, Umezawa N, Hosono H. Advanced Energy Materials, 2016, 6(1), 1501190. 31 Arlinghaus F J. Journal of Physics and Chemistry of Solids, 1974, 35(8), 931. 32 Deng H X, Li S S, Li J. The Journal of Physical Chemistry C, 2010, 114(11), 4841. 33 Wu Q H, Thissen A, Jaegermann W, et al. Applied Surface Science, 2004, 236(1-4), 473. 34 Islamov D R, Kruchinin V N, Aliev V S, et al. Advances in Science and Technology, 2017, 99, 69. 35 Bradley S R. Computational modelling of oxygen defects and interfaces in monoclinic HfO2. Ph.D. Thesis, UCL (University College London),UK,2016. 36 Chen D, Niu F, Qin L, et al. Solar Energy Materials and Solar Cells, 2017, 171, 24. 37 Pan X, Yang M Q, Fu X, et al.Nanoscale, 2013, 5(9), 3601. 38 Yoo J J, Seo G, Chua M R, et al. Nature, 2021, 590(7847),587. 39 Zhang W, Wan L, Fu S, et al. Journal of Materials Chemistry A, 2020, 8(14), 6546. 40 Giacomo F D, Razza S, Matteocci F, et al. Power Sources, 2014, 251, 152. 41 Liu X, Tsai K W, Zhu Z, et al. Advanced Materials Interfaces, 2016, 3, 1600122. 42 Yang D, Yang R, Wang K, et al.Nature Communications,2018,9(1),1.