Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 20110236-6    https://doi.org/10.11896/cldb.20110236
  无机非金属及其复合材料 |
原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响
明帅强1,2,3, 王浙加3, 吴鹿杰1,4, 冯嘉恒3, 高雅增1,2, 卢维尔1,2, 夏洋1,2
1 中国科学院微电子研究所微电子仪器设备研究中心,北京 100029
2 中国科学院大学微电子学院,北京 101407
3 嘉兴科民电子设备技术有限公司,浙江 嘉兴 314022
4 北京交通大学理学院,北京 100044
SnO2 Thin Film Prepared by Atomic Layer Deposition Technology and Its Effect on the Performance of Perovskite Solar Cells
MING Shuaiqiang1,2,3, WANG Zhejia3, WU Lujie1,4, FENG Jiaheng3, GAO Yazeng1,2, LU Weier1,2, XIA Yang1,2
1 Microelectronic Instrument and Equipment Research Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
2 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 101407, China
3 Jiaxing Kemin Electronic Equipment Technology Co., Ltd., Jiaxing 314022,Zhejiang, China
4 School of Science,Beijing Jiaotong University, Beijing 100044, China
下载:  全 文 ( PDF ) ( 5853KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以单晶硅为衬底、四(二甲氨基)锡和水为前驱体,研究原子层沉积技术制备氧化锡薄膜的工艺及其光学和电学性能,并将其应用于钙钛矿太阳能电池。通过调节基底温度,详细研究了沉积温度对SnO2薄膜的沉积速率、电学、光学等特性的影响,采用钙钛矿太阳能电池器件辅助验证SnO2薄膜的性能。研究发现,随着基底温度的升高,沉积速率逐渐下降,原子层沉积的温度窗口在120~250 ℃;折射率随着温度的升高逐渐增大,带隙随温度升高而减小;沉积温度越高,表面氧空位缺陷浓度越大。SnO2薄膜的工艺温度对钙钛矿太阳能电池性能有较大影响,采用160 ℃沉积的SnO2薄膜作钙钛矿太阳能电池的电子传输层,可获得最优的电池性能,反扫最高效率为18.68%,此时器件的截止电压为1.077 V,短路电流密度为23.67 mA/cm2,填充因子为73.3%,且器件具有较小的迟滞效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
明帅强
王浙加
吴鹿杰
冯嘉恒
高雅增
卢维尔
夏洋
关键词:  原子层沉积  氧化锡薄膜  生长速率  氧空位  钙钛矿  太阳能电池    
Abstract: In this work, tin oxide (SnO2) thin film was prepared through atomic layer deposition technology with monocrystalline silicon as substrate, te-trakis (dimethylamino) tin and water as the precursor sources. Its optical, electrical properties and application in perovskite solar cell devices were characterized. Through adjusting the temperature of substrates, the effect of deposition temperature on SnO2 film deposition rate, and electrical and optical properties were studied in detail, and the performance of perovskite solar cells was analyzed. The results indicate that with tetrakis (dimethylamino) tin and water as precursors, the deposition rate decreases gradually with the increase of temperature, and the atomic layer deposition temperature window is between 120 ℃ and 250 ℃; the refractive index also increases with temperature. As the temperature increases gradually, the band gap decreases; the higher the deposition temperature is, the higher the surface oxygen vacancy concentration is. The SnO2 thin film deposited at 160 ℃ was used to prepare the perovskite solar cell device, which obtained a champion efficiency (18.68%), with a cut-off voltage of 1.077 V, a short-circuit current density of 23.67 mA/cm2 and a fill factor of 73.3%. The device has less hysteresis effect.
Key words:  atomic layer deposition    tin oxide thin film    growth rate    oxygen vacancy    perovskite    solar cell
发布日期:  2022-04-07
ZTFLH:  TB321  
基金资助: 国家重点研发计划(2018YFF0109100);国家自然科学基金(61427901)
通讯作者:  luweier@ime.ac.cn   
作者简介:  明帅强,2018年6月毕业于温州大学,获得硕士学位。于2018年9月至2021年7月在中国科学院微电子研究所攻读博士学位,主要从事二维材料和微电子元件领域的研究。
卢维尔,中国科学院微电子研究所,副研究员。2012年7月毕业于中国科学院理化技术研究所,获材料学博士专业学位,同年加入中国科学院微电子研究所微电子仪器设备实验室工作至今,主要从事薄膜沉积创新原理设备与工艺的研发,重点研究微纳薄膜、二维材料及器件的制备、表征以及应用。在国内外重要期刊发表文章20多篇,申报发明专利20余项。
引用本文:    
明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
MING Shuaiqiang, WANG Zhejia, WU Lujie, FENG Jiaheng, GAO Yazeng, LU Weier, XIA Yang. SnO2 Thin Film Prepared by Atomic Layer Deposition Technology and Its Effect on the Performance of Perovskite Solar Cells. Materials Reports, 2022, 36(7): 20110236-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110236  或          http://www.mater-rep.com/CN/Y2022/V36/I7/20110236
1 Matthias B, Ulrike D. Progress in Surface Science, 2005, 79, 47.
2 Cheng X B, Zhang R, Zhao C Z, et al. Chemical Reviews, 2017,117(15), 10403.
3 Yeaju J, Hahoon L, Kookrin C. AIP Advances, 2020, 10, 035011.
4 Li Y, Yang F, Wang Y, et al. Solar RRL, 2020, 4(7), 2000218.
5 Jeong J, Choi S P, Chang C I, et al. Solid State Communications, 2003, 127(9-10), 595.
6 Korotcenkov G, Brinzari V, Schwank J, et al. Sensors and Actuators B: Chemical, 2001, 77(1-2), 244.
7 Haider A J, Shaker S S, Mohammed A H. Energy Procedia, 2013, 36,776.
8 Aravindan V, Jinesh K B, Prabhakar R R, et al. Nano Energy, 2013, 2(5), 720.
9 Lu W E, Dong Y B, Li C B, et al. Journal of Inorganic Materials, 2014, 29(4), 345(in Chinese).
卢维尔,董亚斌,李超波,等. 无机材料学报, 2014, 29(4), 345.
10 Liu Y F, Li L X, Wang Y Y, et al. Journal of Inorganic Materials, 2017, 32(7), 751(in Chinese).
刘彦峰,李磊削,王韫宇,等.无机材料学报, 2017, 32(7), 751.
11 Hu H, Dong B H, Wan L, et al.Materials Reports A:Review Papers, 2016,30(12),9(in Chinese).
胡航,董兵海,万丽,等.材料导报:综述篇, 2016,30(12),9.
12 Cremers V, Puurunen R, Dendooven J.Applied Physics Reviews, 2019, 6(2), 021302.
13 Han P, Lai T C, Wang M, et al. Applied Surface Science, 2019, 467-468, 423
14 Meng L, You J B, Yang Y. Nature Communications, 2018, 9, 5265.
15 Cai M L, Wu Y Z, Chen H, et al.Advanced Science, 2017, 4,1600269.
16 Ru P B, Bi E B, Chen H. Materials Reports B:Research Papers,2020,34(9),18003(in Chinese).
茹鹏斌,毕恩兵,陈汉.材料导报:研究篇,2020,34(9),18003.
17 Roose B, Baena J P C, Gödel K C, et al. Nano Energy, 2016, 30, 517.
18 Kim H S, Im S H, Park N G. The Journal of Physical Chemistry C, 2014, 118(11), 5615.
19 Kim J, Kim G, Kim T K, et al. Journal of Materials Chemistry A, 2014, 2(41), 17291.
20 Song J, Zheng E, Wang X F, et al. Solar Energy Materials and Solar Cells, 2016, 144, 623.
21 Song J, Zheng E, Bian J, et al. Journal of Materials Chemistry A, 2015, 3(20), 10837.
22 Qin X, Zhao Z, Wang Y, et al. Journal of Semiconductors, 2017, 38(1), 011002.
23 Baena J P C, Steier L, Tress W, et al. Energy & Environmental Science, 2015, 8(10), 2928.
24 Palmstrom A F, Raiford J A, Prasanna R, et al.Advanced Energy Mate-rials, 2018, 8(23), 1800591.
25 Wu W Q, Chen D, Cheng Y B, et al.Solar RRL, 2017, 1(11), 1700117.
26 Xiao K, Lin R, Han Q, et al.Nature Energy, 2020, 5(11),870
27 Elam J W, Baker D A, Hryn A J, et al.Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2008, 26(2), 244.
28 Jeong S, Seo S, Park H, et al.Chemical Communications, 2019, 55(17), 2433.
29 Wang Y, Kang K M, Kim M, et al. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2018, 36(3), 031504.
30 Wang J, Umezawa N, Hosono H. Advanced Energy Materials, 2016, 6(1), 1501190.
31 Arlinghaus F J. Journal of Physics and Chemistry of Solids, 1974, 35(8), 931.
32 Deng H X, Li S S, Li J. The Journal of Physical Chemistry C, 2010, 114(11), 4841.
33 Wu Q H, Thissen A, Jaegermann W, et al. Applied Surface Science, 2004, 236(1-4), 473.
34 Islamov D R, Kruchinin V N, Aliev V S, et al. Advances in Science and Technology, 2017, 99, 69.
35 Bradley S R. Computational modelling of oxygen defects and interfaces in monoclinic HfO2. Ph.D. Thesis, UCL (University College London),UK,2016.
36 Chen D, Niu F, Qin L, et al. Solar Energy Materials and Solar Cells, 2017, 171, 24.
37 Pan X, Yang M Q, Fu X, et al.Nanoscale, 2013, 5(9), 3601.
38 Yoo J J, Seo G, Chua M R, et al. Nature, 2021, 590(7847),587.
39 Zhang W, Wan L, Fu S, et al. Journal of Materials Chemistry A, 2020, 8(14), 6546.
40 Giacomo F D, Razza S, Matteocci F, et al. Power Sources, 2014, 251, 152.
41 Liu X, Tsai K W, Zhu Z, et al. Advanced Materials Interfaces, 2016, 3, 1600122.
42 Yang D, Yang R, Wang K, et al.Nature Communications,2018,9(1),1.
[1] 宋灵婷, 肖文波, 黄乐, 吴华明. 三维、二维卤化物钙钛矿材料性能及应用综述[J]. 材料导报, 2022, 36(5): 20070246-7.
[2] 宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
[3] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[4] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[5] 唐明响, 陈良, 祁核, 孙胜东, 刘辉, 陈骏. 缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展[J]. 材料导报, 2022, 36(2): 20090329-6.
[6] 汪丰麟, 张为军, 毛海军, 白书欣. 温度稳定型BaTiO3基复合钙钛矿型介质材料研究进展[J]. 材料导报, 2022, 36(1): 20100126-12.
[7] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[8] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[9] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[10] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[11] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[12] 明帅强, 文庆涛, 高雅增, 闫美菊, 卢维尔, 夏洋. 基于原子层沉积技术制备氧化钽薄膜及其特性研究[J]. 材料导报, 2021, 35(6): 6042-6047.
[13] 张意晨, 徐海涛, 赵春辉. 有机太阳能电池PEDOT∶PSS空穴传输层及其改性的研究进展[J]. 材料导报, 2021, 35(3): 3204-3208.
[14] 曾鹂, 彭同江, 孙红娟, 李瑶, 杨敬杰. Mn掺杂LaNi1-xMnxO3的合成及在可见光下的光催化活性[J]. 材料导报, 2021, 35(24): 24018-24025.
[15] 李龙泰, 张春杰, 罗学彬, 杨彬, 郭利民. 用于CO2催化加氢In2O3基催化剂的研究进展[J]. 材料导报, 2021, 35(21): 21071-21078.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed