Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20100126-12    https://doi.org/10.11896/cldb.20100126
  无机非金属及其复合材料 |
温度稳定型BaTiO3基复合钙钛矿型介质材料研究进展
汪丰麟, 张为军, 毛海军, 白书欣
国防科技大学空天科学学院,长沙 410073
Research Progress on Temperature-stable BaTiO3-based Complex Perovskite MLCC Dielectrics
WANG Fenglin,ZHANG Weijun, MAO Haijun, BAI Shuxin
College of Aerospace and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 3724KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多层陶瓷电容器(MLCC)是最为重要的片式无源器件之一。随着电子系统应用领域逐渐拓展, MLCC被要求在更高工作温度和更宽温度范围内具有稳定的性能,因此迫切需要温度稳定型MLCC介质材料。BaTiO3具有高介电常数、低介电损耗、价格低廉、环保无毒等优点,是最受关注的MLCC介质材料之一。但纯BaTiO3难以满足温度稳定型MLCC对介质材料介温稳定性的要求,且因BaTiO3居里温度的固有限制,单独对BaTiO3改性通常难以提升其高温段的介温稳定性,无法满足X8R或X9R标准。因此,利用Bi(M)O3、(Bi0.5Na0.5)TiO3、K0.5Na0.5NbO3与CaCu3Ti4O12等同样具有钙钛矿型结构的化合物与BaTiO3形成固溶体,构建 BaTiO3基复合钙钛矿型介质材料,并在此基础上进一步掺杂改性,已成为获取温度稳定型介质材料的研究热点。本文主要综述了近年来温度稳定型BaTiO3基复合钙钛矿型介质材料的研究进展,并对其发展前景进行了讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪丰麟
张为军
毛海军
白书欣
关键词:  钛酸钡  复合钙钛矿  温度稳定型介质材料  多层陶瓷电容器    
Abstract: Multilayer ceramic capacitor (MLCC)is one of the most important passive components. As the application of MLCC has been extended to many fields, MLCC is required to have stable performance at high working temperature as well as in a wide temperature range. So temperature-stable MLCC dielectrics are urgently needed. BaTiO3 based materials exhibit advantages such as high permittivity, low dielectric loss, low cost and being environmentally-friendly, which make it one of the most widely studied candidates for MLCC dielectrics. However, the permittivity-temperature stability of purified BaTiO3 is unable to meet the requirement of temperature-stable MLCC. Owing to the limitation of the Curie tempe-rature of BaTiO3, it is hard to improve its permittivity-temperature stability to achieve the X8R/X9R standard by simply modifying BaTiO3 itself. Therefore, the avenue of forming BaTiO3-based solid solutions with the mixture of other perovskite compounds including Bi(M)O3, (Bi0.5Na0.5)-TiO3, K0.5Na0.5NbO3 and CaCu3Ti4O12 has attracted much attention, as well as the modification of received BaTiO3-based complex perovskite dielectrics. In this paper, the research progress on BaTiO3-based complex perovskite dielectrics for temperature-stable MLCC application in recent years is reviewed, and the development prospects are commented.
Key words:  BaTiO3    complex perovskite    temperature-stable dielectrics    multilayer ceramic capacitor (MLCC)
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TM534  
基金资助: 国家自然科学基金(51702363)
通讯作者:  zhwjun@nudt.edu.cn   
作者简介:  汪丰麟,2018年12月毕业于国防科技大学,获工学硕士学位。现为国防科技大学材料科学与工程系博士研究生。主要从事电子材料领域的研究。
张为军,国防科技大学材料科学与工程系教授,硕士研究生导师。主要从事电子材料与器件相关领域科学研究,研究方向包括电子浆料、低温共烧陶瓷材料、纳米光电探测材料等。
引用本文:    
汪丰麟, 张为军, 毛海军, 白书欣. 温度稳定型BaTiO3基复合钙钛矿型介质材料研究进展[J]. 材料导报, 2022, 36(1): 20100126-12.
WANG Fenglin,ZHANG Weijun, MAO Haijun, BAI Shuxin. Research Progress on Temperature-stable BaTiO3-based Complex Perovskite MLCC Dielectrics. Materials Reports, 2022, 36(1): 20100126-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100126  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20100126
[1] Jia W, Hou Y, Zheng M, et al. IET Nanodielectrics, 2018, 1(1), 3.
[2] Shrout T R, Zhang S J. Journal of Electroceramics, 2007, 19(1), 113.
[3] von Hippel A. Reviews of Modern Physics, 1950, 22(3), 221.
[4] Tkacz-Smiech K, Kolezyński A, Ptak W S. Solid State Communications, 2003, 127(8), 557.
[5] Pan M, Randall C A. IEEE Electrical Insulation Magazine, 2010, 26(3), 44.
[6] Hoshina T, Wada S, Kuroiwa Y, et al. Applied Physics Letters, 2008, 93(19), 192914.
[7] Fujii I, Ugorek M, Trolier-McKinstry S. Journal of Applied Physics, 2010, 107(10), 104116.
[8] Ghayour H, Abdellahi M. Powder Technology, 2016, 292, 84.
[9] Lee S, Rossetti G A, Liu Z K, et al. Journal of Applied Physics, 2009, 105(9), 093519.
[10] Chang C Y, Wang R L, Huang C Y. Journal of Materials Research, 2012, 27(23), 2937.
[11] Yoon S H, Kim S J, Kim S H, et al. Journal of Applied Physics, 2013, 114(22), 224103.
[12] Liu X, Zhu M, Chen Z, et al. Journal of Alloys and Compounds, 2014, 613, 219.
[13] Tsung L Y, Fu O S, Horng L M, et al. Ceramics International, 2018, 44(4), 3531.
[14] Ma R, Cui B, Wang Y, et al. Materials Research Bulletin,2019,111,311.
[15] Zhang L, Thakur O P, Feteira A, et al. Applied Physics Letters, 2007, 90(14), 142914.
[16] Brajesh K, Kalyani A K, Ranjan R. Applied Physics Letters, 2015, 106(1), 012907.
[17] Fang B J, Wang W W, Ding J N, et al. Advances in Applied Ceramics, 2013, 112(5), 257.
[18] Gong H, Wang X, Zhang S, et al. Materials Research Bulletin, 2016, 73, 233.
[19] Santos I A, Eiras J A. Journal of Physics: Condensed Matter, 2001, 13(50), 11733.
[20] Triamnak N, Yimnirun R, Pokorny J, et al. Journal of the American Ceramic Society, 2013, 96(10), 3176.
[21] Beuerlein M A, Kumar N, Usher T M, et al. Journal of the American Ceramic Society, 2016, 99(9), 2849.
[22] Ogihara H, Randall C A, Trolier-McKinstry S. Journal of the American Ceramic Society, 2009, 92(1), 110.
[23] Bootchanont A, Triamnak N, Rujirawat S, et al. Ceramics International, 2014, 40(9), 14555.
[24] Muhammad R, Iqbal Y. Ceramics International, 2016, 42(16), 19413.
[25] Muhammad R, Iqbal Y, Reaney I M, et al. Journal of the American Ceramic Society, 2016, 99(6), 2089.
[26] Muhammad R, Khesro A. Materials Letters, 2017, 193, 244.
[27] Muhammad R, Khesro A, Uzair M. Journal of Electronic Materials, 2016, 45(8), 4083.
[28] Raengthon N, Cann D P. Journal of the American Ceramic Society, 2012, 95(5), 1604.
[29] Raengthon N, DeRose V J, Brennecka G L, et al. Applied Physics Letters, 2012, 101(11), 112904.
[30] Wu L, Wang X, Shen Z, et al. Journal of the American Ceramic Society, 2017, 100(1), 265.
[31] Zeb A, Bai Y, Button T, et al. Journal of the American Ceramic Society, 2014, 97(8), 2479.
[32] Krayzman V, Levin I, Woicik J C, et al. Applied Physics Letters, 2015, 107(19), 192903.
[33] Hou D, Usher T M, Zhou H, et al. Journal of Applied Physics, 2017, 122(6), 064103.
[34] Roncal-Herrero T, Harrington J, Zeb A, et al. Acta Materialia, 2018, 158, 422.
[35] Zhang Q, Li Z, Li F, et al. Journal of the American Ceramic Society, 2011, 94(12), 4335.
[36] Xiong B, Hao H, Zhang S, et al. Ceramics International,2012,38,45.
[37] Zeb A, Milne S J. Journal of the American Ceramic Society, 2013, 96(9), 2887.
[38] Zeb A, Milne S J. Journal of the American Ceramic Society, 2013, 96(12), 3701.
[39] Jan S U, Zeb A, Milne S J. Journal of the European Ceramic Society, 2016, 36(11), 2713.
[40] Si F, Tang B, Fang Z, et al. Crystals, 2017, 7(6), 168.
[41] Raengthon N, Brown-Shaklee H J, Brennecka G L, et al. Journal of Materials Science, 2012, 48(5), 2245.
[42] Wang T, Jin L, Li C, et al. Journal of the American Ceramic Society, 2015, 98(2), 559.
[43] Liu M, Hao H, Chen W, et al. Ceramics International,2016,42(1),379.
[44] Liu M, Hao H, Zhen Y, et al. Journal of the European Ceramic Society, 2015, 35(8), 2303.
[45] Wang Y, Pu Y, Zheng H, et al. Materials Letters, 2016, 181, 358.
[46] Wang S F, Huebner W. Journal of the American Ceramic Society, 1992, 75(9), 2339.
[47] Wang S F, Huebner W. Journal of the American Ceramic Society, 1993, 76(2), 474.
[48] Smolensky G A, Isupov V A, Agranovskaya A I, et al. Soviet Physics, Solid State, 1961, 2, 2651.
[49] Rdel J, Jo W, Seifert K T P, et al. Journal of the American Ceramic Society, 2009, 92(6), 1153.
[50] Jones G O, Thomas P A. Acta Crystallogr B, 2002, 58(2), 168.
[51] Zhao N, Fan H, Ning L, et al. Journal of the American Ceramic Society, 2018, 101(12), 5578.
[52] Ma W G, Zhu Y W, Marwat M A, et al. Journal of Materials Chemistry C, 2019, 7(2), 281.
[53] Qi H, Zuo R Z. Journal of Materials Chemistry A, 2019, 7(8), 3971.
[54] Su C, Hao H, Xu Q, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(6), 6140.
[55] Cui C, Pu Y, Li X, et al. Materials Research Bulletin, 2018, 105, 114.
[56] Takenaka T, Maruyama K, Sakata K. Japanese Journal of Applied Phy-sics, 1991, 30(9B), 2236.
[57] Suchanicz J, Kusz J, Bhm H. Materials Science and Engineering: B, 2003, 97(2), 154.
[58] Suchanicz J, Kusz J, Bhm H, et al. Journal of the European Ceramic Society, 2003, 23(10), 1559.
[59] Gomah-Pettry J R, Sad S, Marchet P, et al. Journal of the European Ceramic Society, 2004, 24(6), 1165.
[60] Takeda H, Aoto W, Shiosaki T. Applied Physics Letters, 2005, 87(10), 102104.
[61] Gao L, Huang Y, Hu Y, et al. Ceramics International, 2007, 33(6), 1041.
[62] Datta K, Roleder K, Thomas P A. Journal of Applied Physics, 2009, 106(12), 123512.
[63] Datta K, Thomas P A, Roleder K. Physical Review B, 2010, 82(22), 224105.
[64] Yuan Y, Du M, Zhang S, et al. Journal of Materials Science: Materials in Electronics, 2009, 20(2), 157.
[65] Yuan Y, Zhang S R, Zhou X H, et al. Journal of Electronic Materials, 2009, 38(5), 706.
[66] Tang B, Zhang S R, Zhou X H, et al. Journal of Electroceramics, 2010, 25(1), 93.
[67] Li L, Han Y, Zhang P, et al. Journal of Materials Science, 2009, 44(20), 5563.
[68] Li L, Guo D, Xia W, et al. Journal of the American Ceramic Society, 2012, 95(7), 2107.
[69] Li L, Wang M, Liu Y, et al. Ceramics International, 2013, 40(1), 1105.
[70] Wang M, Li L, Zhang N, et al. Journal of the American Ceramic Society, 2013, 96(10), 3046.
[71] Li L, Chen J, Guo D, et al. Ceramics International, 2014, 40(8), 12539.
[72] Li L, Chen J, Zhang N, et al. Journal of Materials Science: Materials in Electronics, 2014, 26(1), 84.
[73] Zhang N, Li L, Yu J. Materials Letters, 2015, 160, 128.
[74] Zhang B, Li L. Ceramics International, 2016, 42(10), 11535.
[75] Li L, Zhang B. Scripta Materialia, 2016, 114, 170.
[76] Zhang N, Li L, Chen J, et al. Materials Letters, 2015, 138, 228.
[77] Zhang N, Li L, Chen J, et al. Ceramics International, 2015, 41(3B), 4805.
[78] Li L, Cai Z, Zhang N, et al. Ceramics International,2017,43(9),7271.
[79] Yao G F, Wang X H, Li L T. Key Engineering Materials, 2012, 512-515, 1160.
[80] Yao G, Wang X, Wu Y, et al. Journal of the American Ceramic Society, 2012, 95(2), 614.
[81] Yao G, Wang X, Zhang Y, et al. Journal of the American Ceramic Society, 2012, 95(11), 3525.
[82] Shen Z, Wang X, Li L. Journal of Materials Science: Materials in Electronics, 2016, 28(4), 3768.
[83] Shen Z B, Wang X H, Song D S, et al. Advances in Applied Ceramics, 2016, 115(7), 435.
[84] Chen L, Wang H, Zhao P, et al. Journal of the American Ceramic Society, 2019, 102(7), 4178.
[85] Chen L, Wang H, Zhao P, et al. Journal of the American Ceramic Society, 2019, 102(5), 2781.
[86] Chen L, Hui K, Wang H, et al. Journal of the European Ceramic Society, 2019, 39(13), 3710.
[87] Chen L, Wang H, Zhao P, et al. Journal of the American Ceramic Society, 2019, 103(2), 1113.
[88] Shirane G, Newnham R, Pepinsky R. Physical Review,1954,96(3),581.
[89] Du H, Zhou W, Luo F, et al. Journal of Applied Physics, 2009, 105(12), 124104.
[90] Guo Y, Kakimoto K, Ohsato H. Japanese Journal of Applied Physics, 2004, 43(9S), 6662.
[91] Ahn C W, Song H C, Nahm S, et al. Japanese Journal of Applied Phy-sics, 2005, 44(44), 1361.
[92] Park H Y, Ahn C W, Song H C, et al. Applied Physics Letters, 2006, 89(6), 062906.
[93] Lu Y T, Chen X M, Jin D Z, et al. Materials Research Bulletin, 2005, 40(10), 1847.
[94] Ha J, Ryu J, Lee H. Applied Physics Letters, 2014, 104(26), 262904.
[95] Kim J, Lee H. Journal of Materials Science: Materials in Electronics, 2015, 27(3), 2315.
[96] Subramanian M A, Li D, Duan N, et al. Journal of Solid State Chemistry, 2000, 151(2), 323.
[97] Ramirez A P, Subramanian M A, Gardel M, et al. Solid State Communications, 2000, 115(5), 217.
[98] Prompa K, Swatsitang E, Saiyasombat C, et al. Ceramics International, 2018, 44(11), 13267.
[99] Sripakdee C, Prompa K, Swatsitang E, et al. Journal of Alloys and Compounds, 2019, 779, 521.
[100] Swatsitang E, Prompa K, Putjuso T. Journal of Materials Science: Materials in Electronics, 2018, 29(15), 12639.
[101] Prompa K, Swatsitang E, Putjuso T. Ceramics International, 2018, 44(17), 20739.
[102] Swatsitang E, Prompa K, Putjuso T. Journal of Materials Science: Materials in Electronics, 2019, 30(23), 20789.
[103] Swatsitang E, Prompa K, Putjuso T. Applied Surface Science, 2019, 478, 197.
[104] Swatsitang E, Prompa K, Putjuso T. Applied Surface Science, 2019, 484, 925.
[105] Swatsitang E, Prompa K, Putjuso T. Journal of Alloys and Compounds, 2019, 789, 231.
[106] Swatsitang E, Prompa K, Putjuso T. Ceramics International, 2019, 45(12), 14733.
[107] Zhao N, Liang P, Wu D, et al. Ceramics International, 2019, 45(17), 22991.
[108] Prompa K, Swatsitang E, Putjuso T. Journal of Materials Science: Materials in Electronics, 2017, 28(20), 15033.
[109] Mao P, Wang J, Zhang L, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(14), 13401.
[110] Almeida A F L, Fechine P B A, Góes J C, et al. Materials Science and Engineering: B, 2004, 111(2-3), 113.
[111] Fechine P B A, Almeida A F L, Freire F N A, et al. Materials Chemistry and Physics, 2006, 96(2-3), 402.
[112] Yang G, Yue Z X, Li X, et al. Key Engineering Materials, 2008, 368-372, 62.
[113] Kim H E, Choi S M, Lee S Y, et al. Electronic Materials Letters, 2013, 9(3), 325.
[114] Kim H E, Choi S M, Hong Y W, et al. Journal of Alloys and Compounds, 2014, 610, 594.
[115] Norezan I, Yahya A K, Talari M K. Journal of Materials Science & Technology, 2012, 28(12), 1137.
[116] Mao P, Wang J, Zhang L, et al. Journal of the European Ceramic Society, 2020,40(8),3011.
[117] Singh L, Rai U S, Mandal K D, et al. Materials Characterization, 2014, 96, 54.
[118] Negi R, Chandrasekhar M, Kumar P. Processing and Application of Ceramics, 2019, 13(2), 164.
[1] 靳学昌, 高珺, 李岩, 陈将俊, 刘春静, 赵宁. 玻璃粉体系对MLCC用铜电极浆料性能的影响[J]. 材料导报, 2021, 35(z2): 294-297.
[2] 姚海燕, 范文亮. BaTiO3薄膜纳米发电机平衡压电势的理论研究[J]. 材料导报, 2021, 35(Z1): 59-61.
[3] 展红全, 邓册, 吴传琦, 李小红, 谢志鹏, 汪长安. 新颖十二面体钛酸钡纳米晶体的水热生长机理[J]. 材料导报, 2019, 33(z1): 98-101.
[4] 张雄,周永江,黄丽华. 机载龙伯透镜天线用聚苯乙烯泡沫塑料的制备及介电常数调控[J]. 材料导报编辑部, 2017, 31(10): 96-100.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed