Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 96-100    https://doi.org/10.11896/j.issn.1005-023X.2017.010.020
  材料研究 |
机载龙伯透镜天线用聚苯乙烯泡沫塑料的制备及介电常数调控
张雄1,周永江2,黄丽华2
1 空军驻长沙地区军事代表室,长沙 410011;
2 国防科技大学新型陶瓷纤维及其复合材料国防科技重点实验室,长沙 410073
Preparation and Dielectric Properties of Polystyrene Foam Material Used for Luneburg Lens Antenna
ZHANG Xiong1, ZHOU Yongjiang2, HUANG Lihua2
1 Military Representative Office of Air Force in Changsha Area, Changsha 410011;
2 Key Laboratory of Advanced Ceramic Fibers and Composites, National University of Defense Technology, Changsha 410073
下载:  全 文 ( PDF ) ( 1214KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对雷达通讯微波频段新型轻质介电复合材料的迫切需求,开展高介电性能复合材料的研究具有现实意义。采用悬浮聚合法制备不同密度的聚苯乙烯泡沫,研究了聚苯乙烯泡沫的介电常数与密度之间的关系,分析了钛酸钡粉末的介电性能。采用干混法添加钛酸钡粉末制备介电常数可调控的轻质钛酸钡/聚苯乙烯复合泡沫。聚苯乙烯泡沫的介电常数随密度增大,表现出弱的频率依赖性和低介电损耗。钛酸钡粉末具有高的介电常数和较低的介电损耗。BaTiO3/PS复合材料的介电常数随着BaTiO3含量的增加而升高。相同介电常数的BaTiO3/PS复合材料和聚苯乙烯泡沫相比,密度显著下降,说明添加BaTiO3可以实现介电材料的轻质化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雄
周永江
黄丽华
关键词:  龙伯透镜  聚苯乙烯发泡塑料  钛酸钡  介电性能    
Abstract: The research on the composite material with high dielectric property is significant for the need of a new type of light dielectric composite material in modern radar and communication system. Polystyrene (PS) foam with different densities was synthesized by suspension polymerization, and the relationship between the dielectric constant and the density of PS foam was studied. The dielectric property of barium titanate (BaTiO3) powder were analyzed. The light barium titanate/polystyrene composite foam was prepared by the dry-mixing method. The dielectric constant of foam or BaTiO3/PS composites increases with the density and shows weak frequency-dependence and low dielectrical loss. Barium titanate powder has high dielectric constant and low dielectrical loss. The dielectric constant of BaTiO3/PS composites increases with the increase of BaTiO3 content. When the dielectric constant of materials are the same, BaTiO3/PS composites is less dense and lighter than that of polystyrene foam, which indicates that the addition of BaTiO3 can realize the weight reduction of dielectric materials.
Key words:  Luneburg lens    polystyrene foam    barium titanate    dielectric property
                    发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: 张雄:男,1981年生,硕士,主要从事雷达隐身材料的研究E-mail:jaekgfkd@163.com周永江:通讯作者,男,1976年生,主要从事雷达隐身材料的研究E-mail:zyj.ly@163.com
引用本文:    
张雄,周永江,黄丽华. 机载龙伯透镜天线用聚苯乙烯泡沫塑料的制备及介电常数调控[J]. 材料导报编辑部, 2017, 31(10): 96-100.
ZHANG Xiong, ZHOU Yongjiang, HUANG Lihua. Preparation and Dielectric Properties of Polystyrene Foam Material Used for Luneburg Lens Antenna. Materials Reports, 2017, 31(10): 96-100.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.020  或          http://www.mater-rep.com/CN/Y2017/V31/I10/96
1 Luneberg R K, Allen L K. Mathematical theory of optics [J]. Am J Phys,1966,34(1):80.
2 Braun E. Radiation characteristics of the spherical luneberg lens [J]. IRE Trans Antennas Propagation,1956,4(2):132.
3 Peeler G, Coleman H. Microwave stepped-index luneberg lenses [J]. IRE Trans Antennas Propagation,1958,6(2):202.
4 Tai C T. The electromagnetic theory of the spherical luneberg lens [J]. Appl Sci Res Sect B,1959,7(1):113.
5 田江晓,郭杰,莫崇江.龙伯透镜制造工艺研究现状及发展趋势分析[J].飞航导弹,2013(5):84.
6 冯孝中,李亚东.高分子材料[M].哈尔滨:哈尔滨工业大学出版社,2006:63.
7 Carpenter Michael,et al. Lens of gradient dielectric constant and methods of production: US,6433936B1[P].2002.
8 Liang Min, Ng Wei-Ren, Chang Kihun, et al.An X-band Luneburg lens antenna fabricated by rapid prototyping technology [C]//2011 IEEE MTT-S International Microwave Symposium.Baltimore,2011:1.
9 Zhu Jianhua, Liang Fei, Wang Xiaohong, et al. Discussion on mu-tual restrain relation between the dielectric properties of microwave dielectric ceramic materials [J]. Electron Components Mater,2005,24(3):32(in Chinese).
朱建华,梁飞,汪小红,等. 微波介质陶瓷材料介电性能间的制约关系[J].电子元件与材料,2005,24(3):32.
10 Chen Q, Hong R Y, Feng W G. Preparation and characterization of composites from Ba0.5Sr0.5TiO3 and polystyrene[J].J Alloys Compd,2014,609:274.
[1] 展红全, 邓册, 吴传琦, 李小红, 谢志鹏, 汪长安. 新颖十二面体钛酸钡纳米晶体的水热生长机理[J]. 材料导报, 2019, 33(z1): 98-101.
[2] 王耿,傅邱云,张芦,施浩,田帆. 钡镧钛系高介低损耗微波介质陶瓷研究进展[J]. 材料导报, 2019, 33(13): 2151-2158.
[3] 樊娇娇, 何新华, 符小艺, 陈丹玲. Na0.5Bi2.5Nb2O9-Na0.5Bi4.5Ti4O15材料的微观结构及电性能[J]. 材料导报, 2018, 32(22): 3839-3844.
[4] 祝璐,尹沛羊,邓湘云,李建保,张伟,金宏. Ce3+掺杂钛酸钡纳米管薄膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(11): 1924-1927.
[5] 尹奇异,田长安,胡舒婷,王成泽,王婷婷,阳杰,吉冬冬,刘洋. CeO2掺杂制备Ba0.9Ca0.1Ti1-xSnxO3压电陶瓷的结构及电性能[J]. 材料导报编辑部, 2017, 31(22): 26-29.
[6] 吴唯, 陈诗英, 宗孟静子. 纳米Al2O3/聚醚砜-环氧树脂复合材料的介电性能及热稳定性能[J]. 《材料导报》期刊社, 2017, 31(20): 21-24.
[7] 彭森, 吴孟强, 黄同成, 许建明, 周建华, 罗高峰, 余建坤, 张树人. SnO2掺杂对BMN陶瓷结构及介电性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 21-25.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed