Preparation of Tantalum Oxide Thin Films by Atomic Layer Deposition Technique and Their Property Characterization
MING Shuaiqiang1,2, WEN Qingtao1,3, GAO Yazeng1,2, YAN Meiju1,3, LU Weier1,2,4, XIA Yang1,2
1 Microelectronic Instrument and Equipment Research Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China 2 University of Chinese Academy of Sciences, Beijing 101407, China 3 College of Science, Beijing Jiaotong University, Beijing 100044, China 4 Beijing Research Center of Engineering and Technology of Instrument and Equipment for Microelectronics Fabrication,Beijing 100029, China
Abstract: In this paper, the preparation and properties of tantalum oxide thin films by atomic layer deposition technology were studied using single crystal silicon as substrate, tantalum ethoxide and deionized water as tantalum and oxygen source, respectively. The effects of tantalum ethoxide source bottle temperature, substrate temperature and tantalum ethoxide pulse time on the growth rate, roughness and surface morphology of the obtained tantalum oxide thin films were investigated. The results of ellipsometry, atomic force microscopy, scanning electron microscopy and high resolution X-ray photoelectron spectroscopy show that, when tantalum ethoxide was using as the tantalum source, the surface of obtained tantalum oxide thin film are smooth and the roughness is less than 1 nm. The film growth rate is greatly depended on the process conditions. The best overall performance of tantalum oxide thin film was prepared at tantalum ethoxide source temperature, the pulse time and the substrate temperature of 170 ℃, 0.1 s and 200 ℃, respectively. In this condition, the film growth rate is 0.253 Å/cycle. The investigation of the preparation process of high performance tantalum oxide thin film by atomic layer deposition technique based on tantalum ethoxide would lay a foundation for the application in the field of dielectric material, storage medium and optical coating.
1 Kumar S, Kumar H, Vura S, et al. IEEE Transactions on Electron Devices,2019,66(3),1230. 2 Zhang H Z. Design and mechanism on the TaOx-based RRAM device. Master's Thesis, Tianjin University of Technology, China,2016(in Chinese). 张宏智.氧化钽基阻变存储器件的构建与机理研究.硕士论文,天津理工大学,2016. 3 Kumar S, Shankar A, Kishore N, et al. Optik,2019,176,438. 4 Prachachet R, Buranasiri P, Horprathum M, et al. Materials Today: Proceedings,2017,4,6365. 5 Samsudin N, Ferdaous M, Shahahmadi S, et al. Optik-International Journal for Light and Electron Optic,2018,170,295. 6 Ohishi T, Maekawa S, Katoh A. Journal of Non-crystalline Solids,1992,147,493. 7 Tominaga K, Muhammet R, kobayash I, et al. Japanese Journal of Applied Physics,1992,31(5A),L585. 8 Lee J, Chang S, Chen J, et al. Materials Chemistry and Physics,2003,77(1),242. 9 Todorova Z, Donkov N, Ristic Z, et al. Plasma Process and Polymers,2006,3,174. 10 Zhou M, Fu Z, Yang H, et al. Applied Surface Science,1997,108(3),399. 11 Boughaba S, Sproule G, Mccaffrey J, et al. Thin Solid Films,2000,358(1),104. 12 Yamagishi K, Tarui Y. Japanese Journal of Applied Physics,1986,25(4),306. 13 Henke T, Knaunt M, Geidelm M. Thin Solid Films,2017,627,94. 14 Kukli K, Aarik J, Aidla A, et al. Chemistry of Materials,2001,13(1),122. 15 Diazb, S' wiatowska J, Maurice V, et al. Electrochimica Acta,2013,90(5),232. 16 Th D, Wiedmann M, Mizohata K, et al. Journal of the American Chemical Society,2007,129(41),12370. 17 Lintanf-salaün A, Mantoux A, Djurado E, et al. Journal of the Electrochemical Society,2010,87,373. 18 Han P, Lai T C, Wang M, et al. Applied Surface Science,2019,467-468,423. 19 Lu W E, Dong Y B, Li C B, et al. Journal of Inorganic Materials,2014,29(4),345(in Chinese). 卢维尔,董亚斌,李超波,等.无机材料学报,2014,29(4),345. 20 Liu Y F, Li L X, Wang Y Y, et al. Journal of Inorganic Materials,2017,32(7),751(in Chinese). 刘彦峰,李磊削,王韫宇,等.无机材料学报,2017,32(7),751. 21 Hu H, Dong B H, Wan L, et al. Materials Reports A: Review Papers,2016,30(12),9(in Chinese). 胡航,董兵海,万丽,等.材料导报:综述篇,2016,30(12),9. 22 Cremers V, Puurunen R, Dendooven J. Applied Physics Reviews,2019,6(2),021302. 23 Kern L, Galceran R, Zatko V, et al. Applied Physics Letters,2019,114(5),053107. 24 Li X, Yan Z H, Zhu L Q, et al. Materials Reports B: Research Papers,2013,27(4),40(in Chinese). 李想,颜钟惠,竺立强,等.材料导报:研究篇,2013,27(4),40. 25 Lu W E, Li C B, Xia Y, et al. Materials Reports,2014,28(S2),255(in Chinese). 卢维尔,李超波,夏洋,等.材料导报,2014,28(S2),255. 26 Liu L H, Liu Y P, Ma J Y, et al. Materials Reports B: Research Papers,2019,33(9),3026(in Chinese). 刘律宏,刘燕萍,马晋遥,等.材料导报:研究篇,2019,33(9),3026. 27 Hudait M, Clavel M, Liu J, et al. ACS Omega,2018,3(11),14567. 28 Zhang Y W, Wang L, Cheng X H, et al. Journal of Inorganic Materials,2012,27(9),956(in Chinese). 张有为,万里,程新红,等.无机材料学报,2012,27(9),956. 29 Zhang Z, Dwyer T, Sirard S, et al. Journal of Vacuum Science & Techno-logy A, Vacuum, Surfaces, and Films,2019,37(2),020905. 30 Volpi F, Cadix L, Berthomé G, et al. Thin Solid Films,2019,669,392. 31 Sabarirajan D, George T, Vlahakis J, et al. Journal of the Electrochemical Society,2019,166(7),F3081. 32 Wang Z Y, Jiao G C, Fan H Q. Materials Reports,2007(S1),220(in Chinese). 王志育,焦岗成,樊慧庆.材料导报,2007(专辑Ⅷ),220. 33 Kaupo K, Mikkoi R, Leskela M. Chemistry of Materials,2000,12(7),1914. 34 Leskela M, Ritala M. Thin Solid Films.2002,409(1),138. 35 Kukli K, Ritala M, Leskelä M. Journal of the Electrochemical Society,1995,142(5),1670. 36 Chandrasekhar M, Chandra S V, Uthanna S. Indian Journal of Pure & Applied Physics,2009,47,49. 37 Huang C, Ku H, Tsai Y, et al. Optical Review,2009,16(3),274. 38 Huang H F, Cheng G P. Vacuum Electronics,1991(3),24(in Chinese). 黄蕙芬,陈国平.真空电子技术,1991(3),24. 39 Liu H S, Jiang C H, Wang L S, et al. Optics and Precision Engineering,2014,22(10),2645(in Chinese). 刘华松,姜承慧,王利栓,等.光学精密工程,2014,22(10),2645. 40 Liu C J, Shen J R, Li F X. Optical Technique,1995(3),18(in Chinese). 刘崇进,沈家瑞,李凤仙.光学技术,1995(3),18.