Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6042-6047    https://doi.org/10.11896/cldb.19120213
  无机非金属及其复合材料 |
基于原子层沉积技术制备氧化钽薄膜及其特性研究
明帅强1,2, 文庆涛1,3, 高雅增1,2, 闫美菊1,3, 卢维尔1,2,4, 夏洋1,2
1 中国科学院微电子研究所微电子仪器设备研究中心,北京 100029
2 中国科学院大学,北京 101407
3 北京交通大学理学院,北京 100044
4 北京市微电子制备仪器设备工程技术研究中心,北京 100029
Preparation of Tantalum Oxide Thin Films by Atomic Layer Deposition Technique and Their Property Characterization
MING Shuaiqiang1,2, WEN Qingtao1,3, GAO Yazeng1,2, YAN Meiju1,3, LU Weier1,2,4, XIA Yang1,2
1 Microelectronic Instrument and Equipment Research Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
2 University of Chinese Academy of Sciences, Beijing 101407, China
3 College of Science, Beijing Jiaotong University, Beijing 100044, China
4 Beijing Research Center of Engineering and Technology of Instrument and Equipment for Microelectronics Fabrication,Beijing 100029, China
下载:  全 文 ( PDF ) ( 5460KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以单晶硅为衬底,乙醇钽和水分别为钽源和氧源,研究原子层沉积技术制备氧化钽薄膜的工艺,考察了乙醇钽温度、衬底温度、脉冲时间等工艺条件对氧化钽薄膜的生长速率、粗糙度和表面形貌等特性的影响。通过椭偏仪、原子力显微镜、扫描电子显微镜以及高分辨X射线光电子能谱测试分析表明,制备获得的氧化钽薄膜表面光滑,粗糙度小于1 nm,薄膜生长速率受工艺参数的影响较大,其中在乙醇钽源瓶温度170 ℃、脉冲时间0.1 s以及衬底温度200 ℃时,氧化钽的生长速率为0.253 Å/cycle。本工作基于原子层沉积高性能氧化钽薄膜的工艺研究,将对氧化钽薄膜在介质材料、存储介质以及光学涂层等领域的应用奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
明帅强
文庆涛
高雅增
闫美菊
卢维尔
夏洋
关键词:  原子层沉积  氧化钽薄膜  乙醇钽  生长速率  粗糙度    
Abstract: In this paper, the preparation and properties of tantalum oxide thin films by atomic layer deposition technology were studied using single crystal silicon as substrate, tantalum ethoxide and deionized water as tantalum and oxygen source, respectively. The effects of tantalum ethoxide source bottle temperature, substrate temperature and tantalum ethoxide pulse time on the growth rate, roughness and surface morphology of the obtained tantalum oxide thin films were investigated. The results of ellipsometry, atomic force microscopy, scanning electron microscopy and high resolution X-ray photoelectron spectroscopy show that, when tantalum ethoxide was using as the tantalum source, the surface of obtained tantalum oxide thin film are smooth and the roughness is less than 1 nm. The film growth rate is greatly depended on the process conditions. The best overall performance of tantalum oxide thin film was prepared at tantalum ethoxide source temperature, the pulse time and the substrate temperature of 170 ℃, 0.1 s and 200 ℃, respectively. In this condition, the film growth rate is 0.253 Å/cycle. The investigation of the preparation process of high performance tantalum oxide thin film by atomic layer deposition technique based on tantalum ethoxide would lay a foundation for the application in the field of dielectric material, storage medium and optical coating.
Key words:  atomic layer deposition    tantalum oxide thin film    tantalum ethoxide    growth rate    roughness
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TB321  
基金资助: 国家重点研发计划(2018YFF0109100);国家自然科学基金青年科学基金(61604175);国家自然科学基金(61427901)
通讯作者:  luweier@ime.ac.cn   
作者简介:  明帅强,2018年6月毕业于温州大学,获得硕士学位。于2018年9月至2021年7月在中国科学院微电子研究所攻读博士学位,主要从事二维材料和微电子元件领域的研究。
卢维尔,中国科学院微电子研究所,副研究员。2012年7月毕业于中国科学院理化技术研究所,材料学专业博士学位。同年加入中国科学院微电子研究所微电子设备实验室工作至今,主要从事薄膜沉积创新原理设备与工艺的研发,重点研究微纳薄膜、二维材料及器件的制备、表征以及应用。在国内外重要期刊发表文章20多篇,申报发明专利20余项。
引用本文:    
明帅强, 文庆涛, 高雅增, 闫美菊, 卢维尔, 夏洋. 基于原子层沉积技术制备氧化钽薄膜及其特性研究[J]. 材料导报, 2021, 35(6): 6042-6047.
MING Shuaiqiang, WEN Qingtao, GAO Yazeng, YAN Meiju, LU Weier, XIA Yang. Preparation of Tantalum Oxide Thin Films by Atomic Layer Deposition Technique and Their Property Characterization. Materials Reports, 2021, 35(6): 6042-6047.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120213  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6042
1 Kumar S, Kumar H, Vura S, et al. IEEE Transactions on Electron Devices,2019,66(3),1230.
2 Zhang H Z. Design and mechanism on the TaO x-based RRAM device. Master's Thesis, Tianjin University of Technology, China,2016(in Chinese).
张宏智.氧化钽基阻变存储器件的构建与机理研究.硕士论文,天津理工大学,2016.
3 Kumar S, Shankar A, Kishore N, et al. Optik,2019,176,438.
4 Prachachet R, Buranasiri P, Horprathum M, et al. Materials Today: Proceedings,2017,4,6365.
5 Samsudin N, Ferdaous M, Shahahmadi S, et al. Optik-International Journal for Light and Electron Optic,2018,170,295.
6 Ohishi T, Maekawa S, Katoh A. Journal of Non-crystalline Solids,1992,147,493.
7 Tominaga K, Muhammet R, kobayash I, et al. Japanese Journal of Applied Physics,1992,31(5A),L585.
8 Lee J, Chang S, Chen J, et al. Materials Chemistry and Physics,2003,77(1),242.
9 Todorova Z, Donkov N, Ristic Z, et al. Plasma Process and Polymers,2006,3,174.
10 Zhou M, Fu Z, Yang H, et al. Applied Surface Science,1997,108(3),399.
11 Boughaba S, Sproule G, Mccaffrey J, et al. Thin Solid Films,2000,358(1),104.
12 Yamagishi K, Tarui Y. Japanese Journal of Applied Physics,1986,25(4),306.
13 Henke T, Knaunt M, Geidelm M. Thin Solid Films,2017,627,94.
14 Kukli K, Aarik J, Aidla A, et al. Chemistry of Materials,2001,13(1),122.
15 Diazb, S' wiatowska J, Maurice V, et al. Electrochimica Acta,2013,90(5),232.
16 Th D, Wiedmann M, Mizohata K, et al. Journal of the American Chemical Society,2007,129(41),12370.
17 Lintanf-salaün A, Mantoux A, Djurado E, et al. Journal of the Electrochemical Society,2010,87,373.
18 Han P, Lai T C, Wang M, et al. Applied Surface Science,2019,467-468,423.
19 Lu W E, Dong Y B, Li C B, et al. Journal of Inorganic Materials,2014,29(4),345(in Chinese).
卢维尔,董亚斌,李超波,等.无机材料学报,2014,29(4),345.
20 Liu Y F, Li L X, Wang Y Y, et al. Journal of Inorganic Materials,2017,32(7),751(in Chinese).
刘彦峰,李磊削,王韫宇,等.无机材料学报,2017,32(7),751.
21 Hu H, Dong B H, Wan L, et al. Materials Reports A: Review Papers,2016,30(12),9(in Chinese).
胡航,董兵海,万丽,等.材料导报:综述篇,2016,30(12),9.
22 Cremers V, Puurunen R, Dendooven J. Applied Physics Reviews,2019,6(2),021302.
23 Kern L, Galceran R, Zatko V, et al. Applied Physics Letters,2019,114(5),053107.
24 Li X, Yan Z H, Zhu L Q, et al. Materials Reports B: Research Papers,2013,27(4),40(in Chinese).
李想,颜钟惠,竺立强,等.材料导报:研究篇,2013,27(4),40.
25 Lu W E, Li C B, Xia Y, et al. Materials Reports,2014,28(S2),255(in Chinese).
卢维尔,李超波,夏洋,等.材料导报,2014,28(S2),255.
26 Liu L H, Liu Y P, Ma J Y, et al. Materials Reports B: Research Papers,2019,33(9),3026(in Chinese).
刘律宏,刘燕萍,马晋遥,等.材料导报:研究篇,2019,33(9),3026.
27 Hudait M, Clavel M, Liu J, et al. ACS Omega,2018,3(11),14567.
28 Zhang Y W, Wang L, Cheng X H, et al. Journal of Inorganic Materials,2012,27(9),956(in Chinese).
张有为,万里,程新红,等.无机材料学报,2012,27(9),956.
29 Zhang Z, Dwyer T, Sirard S, et al. Journal of Vacuum Science & Techno-logy A, Vacuum, Surfaces, and Films,2019,37(2),020905.
30 Volpi F, Cadix L, Berthomé G, et al. Thin Solid Films,2019,669,392.
31 Sabarirajan D, George T, Vlahakis J, et al. Journal of the Electrochemical Society,2019,166(7),F3081.
32 Wang Z Y, Jiao G C, Fan H Q. Materials Reports,2007(S1),220(in Chinese).
王志育,焦岗成,樊慧庆.材料导报,2007(专辑Ⅷ),220.
33 Kaupo K, Mikkoi R, Leskela M. Chemistry of Materials,2000,12(7),1914.
34 Leskela M, Ritala M. Thin Solid Films.2002,409(1),138.
35 Kukli K, Ritala M, Leskelä M. Journal of the Electrochemical Society,1995,142(5),1670.
36 Chandrasekhar M, Chandra S V, Uthanna S. Indian Journal of Pure & Applied Physics,2009,47,49.
37 Huang C, Ku H, Tsai Y, et al. Optical Review,2009,16(3),274.
38 Huang H F, Cheng G P. Vacuum Electronics,1991(3),24(in Chinese).
黄蕙芬,陈国平.真空电子技术,1991(3),24.
39 Liu H S, Jiang C H, Wang L S, et al. Optics and Precision Engineering,2014,22(10),2645(in Chinese).
刘华松,姜承慧,王利栓,等.光学精密工程,2014,22(10),2645.
40 Liu C J, Shen J R, Li F X. Optical Technique,1995(3),18(in Chinese).
刘崇进,沈家瑞,李凤仙.光学技术,1995(3),18.
[1] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[2] 徐善华, 宋翠梅, 李晗. 模拟海洋和一般大气环境下锈蚀钢材表面形貌差异研究[J]. 材料导报, 2021, 35(2): 2125-2132.
[3] 郭俊江,朱香平,许彦涛,曹伟伟,邹永星,陆敏,彭波,司金海,郭海涛. 原子层沉积微通道板的研究进展[J]. 材料导报, 2020, 34(3): 3080-3089.
[4] 刘鹏飞, 王思捷, 殷凤仕, 单腾, 乔玉林. 2024铝合金表面激光除漆工艺及机理[J]. 材料导报, 2020, 34(24): 24121-24126.
[5] 乌李瑛, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. 原子层沉积氮化钽薄膜的研究进展[J]. 材料导报, 2020, 34(19): 19101-19110.
[6] 梁静静, 张相召, 赵光辉, 刘桂武, 邵海成, 乔冠军. 磨削加工对Al2O3陶瓷表面质量与力学性能的影响[J]. 材料导报, 2020, 34(16): 16020-16024.
[7] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[8] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[9] 吕菲, 田原, 宋晶, 杨春颖, 刘雪松. 化学腐蚀工艺对锗单晶片机械强度的影响[J]. 材料导报, 2019, 33(Z2): 428-430.
[10] 刘律宏, 刘燕萍, 马晋遥, 桑利军, 程晓鹏, 张跃飞. 利用原位压痕技术表征原子层沉积Al2O3超薄纳米薄膜的力学性能[J]. 材料导报, 2019, 33(18): 3026-3030.
[11] 孙书兵, 刘艳松, 何小珊, 王锋, 何智兵, 黄景林, 刘磊. 空心微球上Al-W多层涂层的制备与表征[J]. 材料导报, 2018, 32(24): 4297-4302.
[12] 王毅, 王盼, 索红莉, 贾强, 卢东琪, 李怀洲, 吴海明. 哈氏合金电化学抛光工艺的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 37-40.
[13] 余剑武, 胡其丰, 段文, 何利华, 沈湘. 电加工8418钢的能量分配与表面粗糙度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 153-157.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed