Research Progress of Doping Modification of Potassium Sodium Niobate-based Lead-free Piezoelectric Ceramics
SONG Yaya1,2, HUANG Yanfei2, GUO Weiling2, XING Zhiguo2, WANG Haidou2, LV Zhenlin1, ZHANG Zhinan3
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China 2 National Key Laboratory for Remanufacturing, Army Armored Force Institute, Beijing 100072, China 3 School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract: Piezoelectric ceramic materials are widely used due to their excellent electromechanical conversion characteristics. They are mainly divided into lead-based and lead-free piezoelectric ceramics. However, high lead concentration is extremely harmful to the environment, and international legislation has prohibited the application of lead-based piezoelectric ceramics. Therefore, environmentally friendly lead-free piezoelectric ceramics have become the research focus. Potassium sodium niobate (KNN)-based lead-free ceramics are favored because of their large piezoelectric coefficient and high Curie temperature. KNN-based ceramics with appropriate composition and crystal phase adjustment can achieve the best electrical properties at the polycrystalline phase boundary, and some are even comparable to PZT. However, difficulty in controlling the polycrystalline phase boundary and the volatile nature of K and Na in KNN-based ceramics have seriously affected their electrical properties. In addition, the fundamental reasons behind the optimum electrical properties at the polycrystalline phase boundary remain undiscovered. Taking ion substitution, adding new components and adding sintering additives as the starting point, this article discusses the doping mechanism and sintering characteristics of KNN-based ceramics in detail. It also discusses the effects of A-site doping, B-site doping, and A and B-site co-doping on the crystal structure of KNN-based ceramics with a focus on the physical mechanism of the coexistence of R-O, O-T, or R-T phases and high piezoelectric properties, and summarizes prospects and developments in KNN-based piezoelectric ceramics. The results show that adding a new component based on ion substitution is more conducive to constructing a multiphase coexistence microstructure. And the deve-loped sintering aid can effectively improve the poor sintering performance of KNN-based ceramics. Based on the results, it is established that KNN-based piezoelectric ceramics have great potential in replacing lead-based piezoelectric ceramics.
1 Hao J, Li W, Zhai J, et al. Materials Science and Engineering R: Reports, 2019, 135, 1. 2 Saito Y, Takao H, Tani T, et al. Nature, 2004, 432(7013), 84. 3 Wang R, Bando H, Kidate M, et al. Japanese Journal of Applied Phy-sics, 2011, 50(9S2), 09ND10. 4 Wu W, Xiao D, Ma J, et al. Ceramics International, 2014, 40(1), 1133. 5 Zhao Y, Liu J, Zhang X, et al. Journal of Alloys and Compounds, 2018, 763, 695. 6 Zhao R, Li Y, Zheng Z, et al. Materials Chemistry and Physics, 2020, 245, 122806. 7 Fu Z, Yang J, Lu P, et al. Ceramics International, 2017, 43(15), 12893. 8 Yan K, Wang F, Chen X, et al. Ceramics International,2019,45(16),20323. 9 Hussain F, Khesro A, Muhammad R, et al. Materials Research Express, 2019, 6(10), 106309. 10 Ramajo L, Taub J, Castro M S, et al. Journal of Materials Science:Materials in Electronics, 2014, 25(1), 168. 11 Wang X, Wu J, Cheng X, et al. Ceramics International, 2013, 39(7), 8021. 12 Wu J, Tao H, Yuan Y, et al. RSC Advances, 2015, 5(19), 14575. 13 Yang S Y, Wei R T, Wu S Y,et al. Journal of the Chinese Ceramic Society, 2020, 48(4), 520(in Chinese). 杨绳岩, 魏瑞亭, 吴圣扬, 等. 硅酸盐学报, 2020, 48(4), 520. 14 Liao Y, Wang D, Wang H, et al. Ceramics International, 2019, 45(10), 13179. 15 Carreño-Jiménez B, Villafuerte-Castrejón M E, Reyes-Montero A, et al. Boletín de la Sociedad Española de Cerámica y Vidrio, 2021, 60(4), 266. 16 Mensur-Alkoy E, Berksoy-Yavuz A, Alkoy S. Ferroelectrics, 2013, 447(1), 95. 17 Fuentes J, Portelles J, Durruthy-Rodriguez M D, et al. Applied Physics A, 2015, 118(2), 709. 18 Montero-Tavera C, Durruthy-Rodríguez M D, Cortés-Vega F D, et al. Journal of Advanced Ceramics, 2020, 9(3), 1. 19 Duong T A, Erkinov F, Aripova M, et al. Ceramics International, 2021, 47(4), 4925. 20 Zhou J J, Wang K, Li F, et al. Journal of the American Ceramic Society, 2013, 96(2), 519. 21 Li H T, Li R, Wang G X, et al. Journal of the Chinese Ceramic Society, 2020, 48(9), 1396(in Chinese). 李海涛, 李冉, 王广欣, 等. 硅酸盐学报, 2020, 48(9), 1396. 22 Izzuddin I, Jumal M H H, Zainuddin Z, et al. Ceramics International, 2019, 45(14), 17204. 23 Li C, Xu X, Gao Q, et al. Ceramics International, 2019, 45(8), 11092. 24 Zhang B, Wang X, Cheng X, et al. Journal of Alloys and Compounds, 2013, 581, 446. 25 Sun X. Study on the composition and physical properties of potassium sodium niobate-based piezoelectric ceramics. Master's Thesis, Shandong University, China, 2019(in Chinese). 孙雪. 铌酸钾钠基压电陶瓷的组分与物性的研究. 硕士学位论文, 山东大学,2019. 26 Tian A F, Wang Q Q, Hui X, et al. Xi'an University of Science and Technology Journal, 2019, 39(4), 708(in Chinese). 田爱芬, 王茜茜, 惠璇. 等. 西安科技大学学报, 2019, 39(4), 708. 27 Yang W, Wang Y, Li P, et al. Journal of Materials Chemistry C, 2020, 8(18), 6149. 28 Zhou T. The influence of component introduction and doping modification on the properties of KNN-based lead-free piezoelectric ceramics. Master's Thesis, Guizhou University, China, 2018(in Chinese). 周涛. 组元引入及掺杂改性对KNN基无铅压电陶瓷性能的影响. 硕士学位论文, 贵州大学, 2018. 29 Tangsritrakul J, Tang C C, Day S J, et al. Journal of the European Ceramic Society, 2020, 40(3), 672. 30 Qin Y, Zhang J, Yao W, et al. ACS Applied Materials & Interfaces, 2016, 8(11), 7257. 31 Xie L, Xing J, Tan Z, et al. Journal of Alloys and Compounds, 2018, 758, 14. 32 Shi C, Ma J, Wu J, et al. Journal of Alloys and Compounds, 2020, 846, 156245. 33 Tan L, Sun Q, Wang Y, et al. Journal of Alloys and Compounds, 2020, 836, 155419. 34 Wang Y, Zhu W, Sun Q, et al. Journal of Alloys and Compounds, 2019, 787, 407. 35 Jiang M, Liu X, Chen G. Scripta Materialia, 2009, 60(10), 909. 36 Jiang M H, Deng M J, Lu H X, et al. Materials Science and Enginee-ring: B, 2011, 176(2), 167. 37 Shi C, Ma J, Wu J, et al. Ceramics International, 2020, 46(3), 2798. 38 Lee M K, Yang S A, Park J J, et al. Scientific Reports, 2019, 9(1), 1. 39 Li P, Fu Z, Wang F, et al. Acta Materialia, 2020, 199, 542. 40 Dittmer R, Jo W, Roedel J, et al. Advanced Functional Materials, 2012, 22(20), 4208. 41 Fu J, Zuo R, Xu Z. Applied Physics Letters, 2011, 99(6), 062901. 42 Zhang B, Wu J, Cheng X, et al. ACS Applied Materials & Interfaces, 2013, 5(16), 7718. 43 Xu K, Li J, Lv X, et al. Advanced Materials, 2016, 28(38), 8519. 44 Mgbemere H E, Herber R P, Schneider G A, et al. Journal of the European Ceramic Society, 2009, 29(9), 1729. 45 Li X, Xiao D Q, Wu L, et al. Functional Materials, 2009, 40(3), 387(in Chinese). 李香, 肖定全, 吴浪, 等. 功能材料, 2009, 40(3), 387. 46 Jo W, Ollagnier J B, Park J L, et al. Journal of the European Ceramic Society, 2011, 31(12), 2107. 47 Lin D, Kwok K W, Chan H L W, et al. Journal of Alloys and Compounds, 2008, 461(1-2), 273. 48 Yin Q, Yuan S, Dong Q, et al. Journal of Alloys and Compounds, 2010, 491(1-2), 340. 49 Li X J, Hui Z Z, Long W, et al. Journal of Synthetic Crystals, 2012, 41(5), 7(in Chinese). 李晓娟, 惠增哲, 龙伟, 等. 人工晶体学报, 2012, 41(5), 7. 50 Hayati R, Barzegar A. Materials Science and Engineering B, 2010, 172(2), 121. 51 Li Y M, Liu H, Shen Z Y, et al. Chinese Ceramics, 2011, 47(10), 28(in Chinese). 李月明, 刘虎, 沈宗洋, 等. 中国陶瓷, 2011, 47(10), 28. 52 Li X Y, Huang X Y, Deng Y H, et al. Electronic Components and Materials, 2011, 30(3), 18(in Chinese). 李晓毅, 黄新友, 邓悦欢, 等. 电子元件与材料, 2011, 30(3), 18. 53 Gao D, Kwok K W, Lin D, et al. Journal of Materials Science, 2009, 44(10), 2466. 54 Wu W, Chen M, Li J, et al. Journal of Alloys and Compounds, 2016, 670, 128. 55 Su S, Zuo R, Wang X, et al. Materials Research Bulletin, 2010, 45(2), 124. 56 Huang R, Zhao Y, Yan D, et al. Ceramics International, 2019, 45(1), 1450. 57 Matsubara M, Yamaguchi T, Kikuta K, et al. Japanese Journal of Applied Physics, 2004, 43(10R), 7159. 58 Matsubara M, Kikuta K, Hirano S, et al. Journal of Applied Physics, 2005, 97(11), 114105. 59 Chen Y, Jiang X P, Tu N, et al. Journal of Synthetic Crystals, 2009, 38(5), 1098(in Chinese). 陈燕, 江向平, 涂娜, 等.人工晶体学报, 2009, 38(5), 1098. 60 Lin D, Guo M S, Lam K H, et al. Smart Materials and Structures, 2008, 17(3), 035002. 61 Han H S, Koruza J, Patterson E A, et al. Journal of the European Ceramic Society, 2017, 37(5), 2083. 62 Zhang Q, Xu F, Yang R, et al. Ceramics International, 2017, 43(2), 2537. 63 Akca E, Yılmaz H. Ceramics International, 2015, 41(3), 3659. 64 Zhou J J, Cheng L Q, Wang K, et al. Journal of the European Ceramic Society, 2014, 34(5), 1161.