Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 21020127-7    https://doi.org/10.11896/cldb.21020127
  无机非金属及其复合材料 |
磺酸基与羧基修饰纳米二氧化硅:两种阴离子型纳米指纹显现材料的制备与应用
陈煜太1,2, 黄威3, 姜红2, 李珊1, 王元凤1
1 中国政法大学证据科学教育部重点实验室,北京 100080
2 中国人民公安大学侦查学院,北京 100038
3 公安部物证鉴定中心,北京 100038
Synthesis of the Carboxylic and Sulfonic SiO2 and Its Application to Latent Fingermark Development
CHEN Yutai1,2, HUANG Wei3, JIANG Hong2, LI Shan1, WANG Yuanfeng1
1 Key Laboratory of Evidence Science, China University of Political Science and Law, Beijing 100080,China
2 People's Public Security University of China, Beijing 100038,China
3 Institute of Forensic Science, Ministry of Public Security, Beijing 100038,China
下载:  全 文 ( PDF ) ( 5567KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过反相微乳液法制备包埋[Ru(bpy)3]2+的纳米SiO2,赋予指纹显现试剂高效光致发光性能和绿色环保优势;尝试使用氨基前驱体和氨解反应两步法,制得羧基表面修饰的纳米SiO2;通过巯基前驱体和氧化反应两步法,制得磺酸基表面修饰的纳米SiO2,并综合比较了羧基修饰和磺酸基修饰两种表面修饰路径的效果。实验结果表明,染料和包埋产物的紫外可见区吸收峰值分别在452.43 nm和476.06 nm,羧基修饰和磺酸基修饰纳米SiO2的平均粒径约为40 nm,DLS粒径分别为122.4 nm和110.1 nm,Zeta电位分布峰值分别为-33.16 mV和-34.99 mV,两种体系对于悬浮液酸碱度的敏感程度存在差异,正交试验考察两种材料显现潜在指纹的最佳条件分别为稀释比例1∶3、pH值2.9、浸显时间5 min,稀释比例1∶5、pH值3.5、浸显时间5 min。此复合材料具有良好的显现效率和安全性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈煜太
黄威
姜红
李珊
王元凤
关键词:  指纹  纳米二氧化硅  荧光  小颗粒悬浮液    
Abstract: Silica nanoparticles embedded with [Ru(bpy)3]2+ were synthesized by inverse microemulsion method, which endowed the fingerprint developing reagent with excellent photoluminescence and high safety. Carboxyl modified silica nanoparticles were prepared by a two-step method using amino precursor and ammonolysis reaction. Sulfonic acid modified silica nanoparticles were prepared by a two-step method using sulfhydryl precursor and oxidation reaction. The two types of negatively charged silica nanoparticles were compared comprehensively. It indicated that the absorption peaks of [Ru(bpy)3]2+ and dye-doped nanoparticles in UV-Vis region were 452.43 nm and 476.06 nm, respectively. The average particle sizes of carboxyl and sulfonic acid modified silica nanoparticles were approximately 40 nm, and the DLS particle sizes were 122.4 nm and 110.1 nm, respectively. The peak values of Zeta potential distribution were -33.16 mV and -34.99 mV, respectively. When dispersed into the solution, carboxyl and sulfonic acid modified silica nanoparticles presented different sensitivities to the pH value of suspension. The optimized conditions for latent fingerprint development by the two negatively charged nanoparticles were achieved through orthogonal design experiment, which included dilution ratio 1∶3, pH value 2.9 and developing time 5 min for carboxylic SiO2, and dilution ratio 1∶5, pH value 3.5 and developing time 5 min for sulfonic SiO2. The newly synthesized nanocomposites are highly efficient and safe when utilized for latent fingerprint developing.
Key words:  fingermark detecting    nano silica    fluorescence    small particle reagent
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  O657.3  
基金资助: 国家重点研发计划项目(2018YFC0807304);国家自然科学基金项目(61108075);中国政法大学校级科学研究规划项目(20116040)
通讯作者:  yuanfengw@cupl.edu.cn   
作者简介:  陈煜太,2019年6月毕业于中国人民公安大学,获得物证技术学硕士学位。于2017年3月至2019年6月在中国政法大学联合培养学习,主要从事阴离子修饰纳米二氧化硅的制备与应用。
王元凤,中国政法大学,教授。2008年7月毕业于中国人民公安大学,物证技术方向。同年加入证据科学教育部重点实验室工作至今,主要从事基于纳米材料的指纹显现试剂的研发,重点研究功能型纳米材料的合成并探索其在指纹显现领域的潜在应用。在国内外重要期刊发表文章50多篇,主持项目12项。
引用本文:    
陈煜太, 黄威, 姜红, 李珊, 王元凤. 磺酸基与羧基修饰纳米二氧化硅:两种阴离子型纳米指纹显现材料的制备与应用[J]. 材料导报, 2022, 36(5): 21020127-7.
CHEN Yutai, HUANG Wei, JIANG Hong, LI Shan, WANG Yuanfeng. Synthesis of the Carboxylic and Sulfonic SiO2 and Its Application to Latent Fingermark Development. Materials Reports, 2022, 36(5): 21020127-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020127  或          http://www.mater-rep.com/CN/Y2022/V36/I5/21020127
1 Yang R Q. Nano technology and latent fingermark detection, PHCPPSU, China, 2016,pp.5(in Chinese).
杨瑞琴. 纳米技术与潜指纹显现, 中国人民公安大学出版社, 2016,pp.5.
2 Luo Y P. Forensic marks and impressions examination, PHCPPSU, China, 2014,pp.4(in Chinese).
罗亚平. 痕迹检验教程, 中国人民公安大学出版社, 2014,pp.4.
3 Champod C, Lennard C, Margot P, et al. Fingerprints and other ridge skin impressions (second ddition), CRC Press, US, 2016,pp.15.
4 Ma R L, Zhao Y, Gao F, et al. Chinese Journal of Forensic Sciences, 2016(2), 64(in Chinese).
马荣梁, 赵越, 高峰, 等. 中国司法鉴定, 2016(2), 64.
5 Prasad V, Lukose S, Agarwal P, et al. Journal of Forensic Sciences, 2019, 65(4), 26.
6 Kanodarwala F K, Moret S, Spindler X, et al. Wiley Interdisciplinary Reviews Forensic Science, 2019, 1(5), e1341.
7 Moret S, Bécue A, Champod C.Nanotechnology, 2014, 25(42), 1.
8 Rajan R, Zakaria Y, Shamsuddin S, et al. Egyptian Journal of Forensic Sciences, 2019, 9,50.
9 Lee P L T, Kanodarwala F K, Lennard C, et al. Forensic Science International, 2019,298,372.
10 Kim Y J, Jung H S, Lim J, et al. Langmuir, 2016, 32(32), 8077.
11 Barros H L, Stefani V.Journal of Photochemistry Photobiology A: Chemistry, 2019, 368.
12 Yuan C, Li M, Wang M, et al. Chemical Engineering Journal, 2020, 383, 123076.
13 Chen H Y, Liu L.Nano, 2019, 14(6), 1950068.
14 Niu P, Liu B, Li Y, et al. Dyes and Pigments, 2015, 119, 1.
15 Li X, Li Q, Li Y, et al. Analytical Letters, 2013, 46(13), 2111.
16 Hauser F M, Knupp G, Officer S.Forensic Science International, 2015, 253,55.
17 Fernandes D, Krysmann M J, Kelarakis A.Chemical Communications, 2016, 52(53), 8294.
18 Wang L, Gu W, An Z, et al. Sensors and Actuators B: Chemical, 2018, 266, 19.
19 Liu L, Gill S K, Gao Y, et al. Forensic Science International, 2008, 176(2), 163.
20 Saif M.Journal of Luminescence, 2013, 135(9), 187.
21 El-Inany G A, Seleem H S, Helmy R, et al. Journal of Molecular Structure, 2018, 1173, 111.
22 Olszowska I, Les'niewski A, Kelm A, et al. Methods and Applications in Fluorescence, 2020, 8(2),25001.
23 Zhang S, Liu R, Cui Q, et al. ACS Applied Materials & Interfaces, 2017, 9(50), 44134.
24 Wang H F, Li X J, Liu H.Materials Reports B: Research Papers, 2011(9), 140(in Chinese).
王鸿飞, 李孝君, 刘寰. 材料导报:研究篇, 2011(9), 140.
25 Huang W, Li X, Wang H, et al. Analytical Letters,2015,48(9),1524.
26 Zhang M, Ou Y, Du X, et al. Journal of Porous Materials,2017,24,13.
27 Andrade G R S, Nascimento C C, Santos Y H, et al. Dyes and Pigments, 2018, 155, 202.
28 Zhang H, You J, Nie C, et al. Journal of Luminescence, 2019, 215, 116582.
29 Meng L, Ren Y, Zhou Z, et al. Forensic Science Research,2020,5(1),38.
[1] 韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
[2] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[3] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[4] 张军, 王薇, 储刚, 周丹丹, 赵婧, 王琳, 李芳芳. 生物炭中溶解性有机质与Cu(Ⅱ)的络合机制研究[J]. 材料导报, 2021, 35(22): 22160-22165.
[5] 张䶮, 朱永乐, 黄丽娟, 王永安, 赵瑾, 聂志勇. 介孔二氧化硅门控开关在分析检测中的研究进展[J]. 材料导报, 2021, 35(15): 15081-15087.
[6] 李道亮, 王嫦嫦, 郭婷, 周鸿媛, 张宇昊, 马良. 掺杂法制备溴氰菊酯UCNP-Fe3O4-MIP传感材料及其传感体系研究[J]. 材料导报, 2021, 35(12): 12169-12174.
[7] 余冬燕, 吴幸雅, 闫共芹, 曹杰亮. 稀土掺杂磷酸盐荧光粉的研究进展[J]. 材料导报, 2020, 34(Z2): 41-47.
[8] 郭潇, 周玉洁, 高静茹, 余薇, 许翠, 韩翠平. 可激活荧光-磁共振双模态纳米材料的制备与性能[J]. 材料导报, 2020, 34(Z1): 97-102.
[9] 杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
[10] 张晓琳, 丰晓婷, 詹世平, 卢春兰, 李鸣明, 侯维敏. 基于双硫键的荧光传感器在生物检测及靶向治疗药物输送系统中的应用[J]. 材料导报, 2020, 34(5): 5142-5147.
[11] 蔡海华, 程岚, 李智, 陈李, 童晓玲, 代方银. 添食法制备改性蚕丝的研究进展[J]. 材料导报, 2020, 34(23): 23190-23198.
[12] 李焕焕, 张东东, 许子昂, 董瑶, 赵义平, 陈莉. 荧光碳点改性无纺布的制备及在汞(Ⅱ)检测中的应用[J]. 材料导报, 2020, 34(2): 2163-2168.
[13] 赵思宇, 张祥, 卢伶, 张义, 赵青华. 具有聚集诱导发光性质的热活化延迟荧光材料综述[J]. 材料导报, 2020, 34(17): 17155-17167.
[14] 温慧霞, 樊彬, 李红喜, 许成功, 王玉莹, 赵文玉. 近紫外白光LED用Ba3Y1-x-yB3O9xEu3+,yBi3+高效红色荧光粉的制备与发光性能[J]. 材料导报, 2020, 34(14): 14023-14026.
[15] 章强, 刘洪利, 陈迎豪, 李兴建, 张宜恒. 纳米二氧化硅改性“Click”型侧链含氟聚氨酯的制备及在织物整理剂上的应用[J]. 材料导报, 2020, 34(14): 14218-14222.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed