Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23190-23198    https://doi.org/10.11896/cldb.19050050
  高分子与聚合物基复合材料 |
添食法制备改性蚕丝的研究进展
蔡海华1,2,†, 程岚1,3,†, 李智1,2, 陈李1,2, 童晓玲1,3, 代方银1,2,3
1 西南大学,家蚕基因组生物学国家重点实验室,重庆 400715
2 西南大学纺织服装学院,重庆市生物质纤维材料与现代纺织工程技术研究中心,重庆 400715
3 西南大学生物技术学院,农业部蚕桑生物学与遗传育种重点实验室,重庆 400715
Research Progress on Preparation of Modified Silk by Feeding Method
CAI Haihua1,2,†, CHENG Lan1,3,†, LI Zhi1,2, CHEN Li1,2, TONG Xiaoling1,3, DAI Fangyin1,2,3
1 State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
2 Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China
3 Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
下载:  全 文 ( PDF ) ( 4261KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 蚕丝是优异的天然蛋白质纤维,被广泛地应用在纺织、服装、生物医学等领域。蚕丝的形成需经历一个复杂的过程:家蚕首先在后部丝腺合成丝素蛋白,丝素蛋白液经过中部丝腺,与其合成分泌的丝胶液一起,通过腺腔内的压力进入到前部丝腺、吐丝管,再通过榨丝区的肌肉活动对丝蛋白受到的剪切力进行调节,使其二级结构改变,最后在家蚕头部的牵伸摆动下,迅速固化,形成蚕丝。蚕丝虽然具有优异的性能,但仍存在抗菌性能及抗紫外性能差等缺陷,这在一定程度上限制了蚕丝的应用及蚕丝产业的进一步发展。通过对蚕丝进行改性并赋予其新的功能可拓展蚕丝的应用领域,促进蚕丝产业的发展。添食法具有简单、高效、环保及有利于规模化生产等优点,可在源头改性蚕丝的性能,是大量制备改性蚕丝的最有效方法。
添食物质的选择至关重要。首先,添食物质不能有毒性;添食后,不能影响家蚕正常的生理及生命活动。其次,要注意添食物质颗粒的尺寸。此外,选择的添食物质需要有突出的性能。综合以上因素,纳米颗粒成为添食家蚕的首选物质。研究者们选择不同种类的纳米颗粒进行添食,取得了一定的成果。在保证蚕丝质地柔软光滑本质的同时,能大幅提升蚕丝的力学性能,且改善蚕丝的热稳定性能。目前,通过添食纳米颗粒制备的蚕丝的力学性能最高可提高111.25%。
荧光蚕丝在生物医药工程、光学和光电子领域都具有巨大的应用价值。近年来,有多种方法已应用于制备荧光蚕丝,但大都不够环保且难以大规模持续生产。研究人员通过给五龄时期的家蚕添食具有荧光效应的染料或稀土荧光粉的方法可获得彩色荧光蚕丝。通过此方法所得的荧光蚕丝不仅具有良好的荧光性能,而且具有优异的荧光稳定性。但添食荧光材料会对家蚕的生理和生命活动造成一定影响,并使蚕丝的力学性能有所降低。为了制备具有不同功能的蚕丝,研究人员拓展了添食物质的种类,利用含氮物质、超细羽绒粉体、色素等进行添食,得到了质量突出的蚕茧及力学性能优异的改性蚕丝。
本文以添食物质、添食后制备的改性蚕丝的结构及性能为重点,综述了近年来利用纳米物质、荧光物质及其他物质添食制备改性蚕丝的研究进展,客观分析了不同添食物质对蚕丝结构、力学性能及热性能等的影响,展望了添食法未来的研究及发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡海华
程岚
李智
陈李
童晓玲
代方银
关键词:  蚕丝  改性  添食法  纳米颗粒  荧光材料    
Abstract: Silk is a natural protein fiber that is widely used in textile, clothing, biomedicine and other fields. The formation of silk is a complicated process. Firstly, the silk fibroin proteins are synthesized in posterior silk gland. Then, liquid silk fibroin proteins are transported to the middle silk gland and are mixed together with sericin secreted in middle silk gland. These mixture are transported to the front of the silk gland and spinneret under the pressure of the lumens. The secondary structure of silk protein are adjusted and varied under the shear force through the muscular activity in silk-press area. These silk proteins are extruded quickly with the swinging of silkworm’s head and the solid silk fiber is formed finally. Although silk has excellent performance, it still has some defects such as poor antibacterial activity and low ultraviolet resistance, which limits the application of silk and the further development in silk industry. Modifying silk and endowing it new functions can expand the application field of silk and promote the development of silk industry. The feeding method, with the advantages of simplicity, high efficiency, environmental protection and large-scale production, can modify the properties of silk in origin, and it is the most effective method to obtain modified silk in large scale.
The choice of feeding ingredients is crucial in silkworm feeding method. First of all, feeding ingredients should be nontoxic. After feeding, the physical activities and the vital movement of silkworm should not be influenced. Secondly, the size of feeding ingredients must be the focus. Moreover, the selected ingredients must have outstanding properties. Combined with the above factors, nanoparticles become the preferred materials for feeding silkworm. Researchers have made some achievement through trial and exploration of different nanoparticles. The mechanical properties of silk are remarkably improved and the thermal stability of silk is also improved under the premise of the soft and smooth nature of silk fiber. So far, the mechanical properties of silk can be increased by 111.25% through the feeding of nanoparticles.
The fluorescent silk has great application value in many fields including biomedical engineering, optics and optoelectronics. In recent years, a variety of methods have been used to prepare fluorescent silk, but most of them are not environment-friendly and difficult to have the mass production. Colored fluorescent silk has been obtained by feeding fluorescent dyes or rare earth phosphor to silkworms during their fifth instar. The fluorescence silk prepared by this method not only has the good fluorescence properties, but also has the excellent fluorescence stability. Howe-ver, the feeding of fluorescent materials may affect the physical activities and vital movement of silkworms and reduce the mechanical properties of silk. In order to prepare silk with different functions, researchers have utilized different types of feeding substances. The nitrogen-containing substances, superfine down powder,pigment and so on have been chosen to feed silkworm and the cocoon with good properties and modified silk with excellent mechanical properties have been gained.
In this paper, the structure and properties of modified silk prepared by feeding nanoparticels, fluorescent materials and other ingredients were reviewed in detail. The effect of different feeding ingredients on silk structure, mechanical properties and thermal stability were discussed objectively. And the future study and development trend of the silkworm feeding method were proposed.
Key words:  silk    modification    feeding method    nanoparticel    fluorescent material
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TS102.6  
基金资助: 国家自然科学基金重点项目(31830094);国家高技术发展计划(863)课题资助项目(2013AA102507);国家现代农业产业技术体系项目(CARS-18-ZJ0102);重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0087);中国博士后基金(2019M653819XB);中央高校基本业务费项目(XDJK2019C104;XDJK2020D014);重庆市博士后基金(cstc2019jcyj-bshX0120)
通讯作者:  fydai@swu.edu.cn   
作者简介:  程岚,2018年7月在西南大学纤维材料与工程专业获得博士学位,目前在西南大学和新加坡国立大学进行博士后合作交流研究。主要研究方向为功能化蚕丝及其制品的开发与应用研究。
蔡海华,于2018年6月获得学士学位。现为西南大学纺织服装学院硕士研究生,在代方银教授的指导下进行研究。目前主要研究领域为蚕丝材料、功能纤维。
代方银,科技部中青年科技创新领军人才,重庆市百千万工程领军人才,教育部“长江学者”特聘教授,博士研究生导师。现任家蚕基因组生物学国家重点实验室主任,农业部蚕桑功能基因组与生物技术重点实验室主任,中国蚕学会理事、国家丝绸科学技术专家工作委员会委员,重庆市蚕丝学会副秘书长、学术专委会副主任,重庆市遗传学会副秘书长、动物遗传专委会副主任,西南大学学术委员会委员等。研究方向为家蚕遗传及蚕丝改良等。在包括 Nature Biotechnology, Journal of Biological Chemistry, Genetics, Heredity, Animal Genetics, Scientific Reports, Insect Molecular Biology等著名SCI杂志在内的国内外学术期刊发表论文100余篇,参编出版《蚕丝生物学》《中国南亚热带蚕丝学》等专著5部。
引用本文:    
蔡海华, 程岚, 李智, 陈李, 童晓玲, 代方银. 添食法制备改性蚕丝的研究进展[J]. 材料导报, 2020, 34(23): 23190-23198.
CAI Haihua, CHENG Lan, LI Zhi, CHEN Li, TONG Xiaoling, DAI Fangyin. Research Progress on Preparation of Modified Silk by Feeding Method. Materials Reports, 2020, 34(23): 23190-23198.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050050  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23190
1 Huang J T, Zhu W M, Xia J G, et al. Complete works of sericultural technology in China, Sichuan Publishing House of Science & Technology, China,1995(in Chinese).
黄君庭,朱万民,夏建国,等.中国蚕丝大全,四川科学技术出版社,1995.
2 Sparkes J, Holland C. Macromolecular Bioscience,2018,DOI:10.1002/mabi.201800229.
3 Sparkes J, Holland C. Acta Biomaterialia,2018,69,234.
4 Mortimer B, Guan J, Holland C, et al. Acta Biomaterialia,2015,11,247.
5 Laity P R, Gilks S E, Holland C. Polymer,2015,67,28.
6 Chen F J, Porter D, Vollrath A F. Physical Review E Statistical Nonlinear & Soft Matter Physics,2010,82(4),041911.
7 Aramwit P, Siritientong T, Srichana T. Waste Management & Research,2012,30(3),217.
8 Chen F, Porter D, Vollrath F. Materials Science & Engineering: C (Materials for Biological Applications),2012,32(4),772.
9 Offord C, Vollrath F, Holland C. Journal of Materials Science,2016,51(24),10863.
10 Asakura T, Umemura K, Nakazawa Y, et al. Biomacromolecules,2007,8(1),175.
11 Dong Z, Zhao P, Wang C, et al. Journal of Proteome Research,2013,12(11),5213.
12 Guo N K, Lu K P, Cheng L, et al. International Journal of Biological Macromolecules,2019,126,1282.
13 Akai H. Experientia,1983,39(5),443.
14 Niu Q Q, Peng Q F, Lu L, et al. ACS Nano,2018,12(12),11860.
15 Ma Y, Li Z, Dai F Y, et al. Science of Sericulture,2016(6),1106(in Chinese).
马艳,李智,代方银,等.蚕业科学,2016(6),1106.
16 Yin Z, Jian M Q, Wang C Y, et al. Nano Letters,2018,18(11),7085.
17 Xu G N, Liu C F, Xie H L. Guangdong Chemical Industry,2004,31(6),38(in Chinese).
徐光年,刘传芳,谢红璐.广东化工,2004,31(6),38.
18 Yao C, Gao G S, Lin X P, et al. Journal of Inorganic Materials,2006,21(2),315(in Chinese).
姚超,高国生,林西平,等.无机材料学报,2006,21(2),315.
19 Pacheco-Torgal F, Jalali S. Nanotechnology: Construction and Building Materials,2011,25(2),582.
20 Cai L Y, Shao H L, Hu X C, et al. ACS Sustainable Chemistry & Engineering,2015,3(10),2251.
21 Ma Z X, Han Y X, Zheng L X, et al. Chemical Industry and Engineering Progress,2002,21(1),60(in Chinese).
马正先,韩跃新,郑龙熙,等.化工进展,2002,21(1),60.
22 Meulenkamp E A. Journal of Physical Chemistry B,1998,102(102),5566.
23 Zhang Y P, Cai L Y, Shao H L, et al. C.N. patent application, CN104872082A,2015.
24 Yu G W, Zhang T L,Zhang J G, et al. Progress in Chemistry,2007,19(6),884(in Chinese).
于文广,张同来,张建国,等.化学进展,2007,19(6),884.
25 Xuan S H, Wang Y X, Yu J C, et al. Chemistry of Materials,2009,21(21),5079.
26 Wang J T, Li L L, Feng L, et al. International Journal of Biological Macromolecules,2014,63,205.
27 Zhang C H. The structures and properties of silk fiber prepared by feeding method. Master’s Thesis, Wuhan Textile University, China,2015(in Chinese).
张春华.喂食法制备蚕丝纤维及其结构与性能研究.硕士学位论文,武汉纺织大学,2015.
28 Chen X P, Liang J Z, Xiao H, et al. C.N. patent application, CN201810125615.5,2018.
29 Daniel M C, Astruc D. Chemical Reviews,2004,104(1),293.
30 Cobley C M, Xia Y N. Materials Science & Engineering R Reports A Review Journal,2010,70(3),44.
31 Sau T K, Rogach A L. Advanced Materials,2010,22(16),1781.
32 Lu X M, Rycenga M, Skrabalak S E, et al. Annual Review of Physical Chemistry,2008,60(1),167.
33 Xia Y N, Xiong Y J, Lim B K, et al. Angewandte Chemie International Edition,2013,38(4),335.
34 Tao A R, Huang J, Yang P. Accounts of Chemical Research,2008,41(12),1662.
35 Murray, Royce W. Chemical Reviews,2008,108(7),2688.
36 Peng Z M, Hong Y. Nano Today,2009,4(2),143.
37 Tao A R, Habas S, Yang P. Small,2010,4(3),310.
38 Chen J, Shaikh Z A. Toxicology & Applied Pharmacology,2009,241(1),81.
39 Skrabalak S E, Chen J Y, Sun Y G, et al. Accounts of Chemical Research,2008,40(14),1587.
40 Wiley B, Sun Y G, Xia Y N. Accounts of Chemical Research,2007,40(10),1067.
41 Ni M, Zhang H, Li F C, et al. Peptides,2015,68,64.
42 Li F C, Gu Z Y, Wang B B, et al. Journal of Chemical Ecology,2014,40(8),913.
43 Ni M, Li F C, Wang B B, et al. Biological Trace Element Research,2015,164,106.
44 Ni M, Li F C, Tian J H, et al. Biological Trace Element Research,2015,166(2),225.
45 Wu G H, Song P, Zhang D Y, et al. International Journal of Biological Macromolecules,2017,104,533.
46 Song P. Effects of metal nanoparticles on the structures and mechanical properties of silk fiber. Master’s Thesis, Jiangsu University of Science and Technology, China,2017(in Chinese).
宋鹏.金属纳米材料对家蚕蚕丝结构及力学性能的影响.硕士学位论文,江苏科技大学,2017.
47 Cheng L, Huang H M, Chen S Y, et al. Materials & Design,2017,129,125.
48 Yan H R. Physical properties of graphene and carbon nanotubes were compared. Master’s Thesis, Jiangnan University, China,2009(in Chinese).
颜浩然.石墨烯与碳纳米管的物理特性比较研究.硕士学位论文,江南大学,2009.
49 Baughman R H. Science,2002,297(5582),787.
50 Zhong X H, Li Y L, Liu Y K, et al. Advanced Materials,2010,22(6),692.
51 Li Y L, Kinloch I A, Windle A H. Science,2004,304(5668),276.
52 Zhang M, Atkinson K R, Baughman R H. Science,2004,306(5700),1358.
53 Dong Z L, Jiang C C, Cheng H H, et al. Advanced Materials,2012,24(14),1856.
54 Wang Q, Jian M Q, Wang C Y, et al. Advanced Functional Materials,2017,27(9),1605657.
55 Li X, Rui M, Song J, Shen Z, et al. Advanced Functional Materials,2015,25(31),4929.
56 Bartelmess J, Quinn S J, Giordani S. Chemical Society Reviews,2015,44(14),467.
57 Lim S Y, Shen W, Gao Z Q. Chemical Society Reviews,2015,44(1),362.
58 Zheng X T, Ananthanarayanan A, Luo K Q, et al. Small,2015,11(14),1620.
59 Zhang S, Li Y, Song H, et al. Scientific Reports,2016,6,19292.
60 Wang J T, Li L L, Zhang M Y, et al. Materials Science & Engineering C Materials for Biological Applications,2014,34(1),417.
61 Wang Q, Wang C Y, Zhang M C, et al. Nano Letters,2016(5),6695.
62 Cai L Y. Functional silks from silkworms fed with nanoparticles-containing diet. Master’s Thesis, Donghua University, China,2016(in Chinese).
蔡凌月.基于纳米粒子添食育蚕法改性家蚕茧丝.硕士学位论文,东华大学,2016.
63 Yan S Q, Xing R, Zhou Y F, et al. Scientific Reports,2016,6,34182.
64 Xing R, Chen X D, Zhou Y F, et al. Scientific Reports,2016,6(1),19802.
65 Ma L, Akurugu M A, Andoh V, et al. Science China Materials,2019,62(2),245.
66 Cheng L, Zhao H P, Huang H M, et al. Journal of Materials Science,2019,54(13),9945.
67 Roy R, Komarneni S, Roy D M. MRS Proceedings,1984,32,347.
68 Cheng X T, Tang X D, Wang Y Z. China Synithetic Resin and Plastics,2001,18(2),62(in Chinese).
陈晓婷,唐旭东,王玉忠.合成树脂及塑料,2001,18(2),62.
69 Kim D W, Lee O J, Kim S W, et al. Biomaterials,2015,70,48.
70 Zheng X T, Zheng M L, Zhang Hui, et al. Synithetic Technology and Application,2018,33(1),1(in Chinese).
郑小婷,赵梦露,张慧慧,等.合成技术及应用,2018,33(1),1.
71 Yang B, Li Y, Xu C X, et al. Chemical Research and Appiication,2003,15(1),11(in Chinese).
杨冰,李瑛,徐创霞,等.化学研究与应用,2003,15(1),11.
72 Tansil N C, Li Y, Teng C P, et al. Advanced Materials,2011,23(12),1463.
73 Tansil N C, Koh D L, Han M Y. Advanced Materials,2012,24(11),1350.
74 Tansil N C, Li Y, Koh L D, et al. Biomaterials,2011,32(36),9576.
75 Ji J Y. The study on the structure and fabrication of Rhodamine modified silkworm silk. Master’s Thesis, Donghua University, China,2014(in Chinese).
季金燕.罗丹明改性天然蚕丝的制备及结构研究.硕士学位论文,东华大学,2014.
76 Nisal A, Trivedy K, Mohammad H, et al. ACS Sustainable Chemistry & Engineering,2014,2(2),312.
77 Li K, Zhao J L,Zhang J J, et al. ACS Biomaterials Science & Enginee-ring,2015,1(7),494.
78 Guo Z H, Xie W S, Gao Q, et al. International Journal of Biological Macromolecules,2017,109(1),21.
79 Zhang C H, Liu X, Xia L J, et al. Journal of Natural Fibers,2018,15(4),496.
80 Fernandes J, Nicodemo D, Oliveira J E, et al. Journal of Materials Science,2017,52(5),2684.
81 Yin S Q. Research on producing colored silk by feeding additive to silkworm, Bombyx mori. Master’s Thesis, Soochow University, China,2009(in Chinese).
尹书倩.添食法生产彩色茧丝的研究.硕士学位论文,苏州大学,2009.
82 Cheng L, Huang H M, Zeng J Y, et al. Materials,2019,12(1),2.
83 Zhu Q Y, Li M J, Chen Y B, et al. Science of Sericulture,2015,41(4),658(in Chinese).
朱巧莹,李敏杰,陈燕冰,等.蚕业科学,2015,41(4),658.
[1] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[2] 张通姗, 徐海萍, 徐世豪, 廖杨科, 熊维. 废弃高抗冲聚苯乙烯高值化再利用的研究进展[J]. 材料导报, 2020, 34(Z1): 557-562.
[3] 纪宪坤, 汪源, 汪苏平, 胡志豪. 酯化改性抗泥型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2020, 34(Z1): 596-600.
[4] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[5] 刘伟, 崔升, 李建平, 叶欣, 尚思思, 杨照军, 沈晓冬. 气凝胶吸油材料的研究进展[J]. 材料导报, 2020, 34(9): 9019-9027.
[6] 郭锦, 李占龙, 连晋毅, 闫晓燕, 张敏刚. 改性乙炔黑对锂硫电池电化学性能的影响[J]. 材料导报, 2020, 34(8): 8020-8024.
[7] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[8] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[9] 石敏, 陶思洁, 李丹, 王鑫, 徐水, 朱勇. 面向组织工程应用的再生丝素/海藻酸钙海绵:制备、表征及体内、体外性能研究[J]. 材料导报, 2020, 34(4): 4158-4165.
[10] 易鹏,吴国娟,段文焱,吴敏,潘波. 生物炭的改性和老化及环境效应的研究进展[J]. 材料导报, 2020, 34(3): 3037-3043.
[11] 时运, 胡荣祥, 马骏, 杜培松, 陈曦, 杜晓东. 外加磁场对等离子熔覆Fe313合金涂层组织性能的影响[J]. 材料导报, 2020, 34(24): 24127-24131.
[12] 李悦, 赵冰垠, 黄舟, 吴玉生, 金彩云, 蔡博群. 低泥土敏感性聚羧酸减水剂的制备[J]. 材料导报, 2020, 34(22): 22185-22189.
[13] 宋国林, 张泽, 沈成柱, 范鑫, 谢俊伟, 唐国翌. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.
[14] 辛雪, 苏林萍, 梁 明, 姚占勇, 范维玉, 南国枝, 张吉哲. 废胶粉改性制备高模量沥青及其动态力学性能[J]. 材料导报, 2020, 34(18): 18060-18064.
[15] 王淋, 郭乃胜, 温彦凯, 谭忆秋, 尤占平. 考虑老化影响的岩沥青复合改性沥青流变特性及微观机制[J]. 材料导报, 2020, 34(18): 18065-18073.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed