Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22185-22189    https://doi.org/10.11896/cldb.19090124
  高分子与聚合物基复合材料 |
低泥土敏感性聚羧酸减水剂的制备
李悦1, 赵冰垠1, 黄舟2, 吴玉生2, 金彩云3, 蔡博群1
1 北京工业大学城市与工程安全减灾教育部重点实验室,北京 100124
2 中国建材检验认证集团厦门宏业有限公司,厦门 361026
3 北京工业大学应用数理学院,北京 100124
Preparation of Low Clay Sensitive Polycarboxylate Superplasticizer
LI Yue1, ZHAO Bingyin1, HUANG Zhou2, WU Yusheng2, JIN Caiyun3, CAI Boqun1
1 The Key Laboratory of Urban Security and Disaster Engineering, MOE, Beijing University of Technology, Beijing 100124, China
2 China Building Materials Inspection and Certification Group Xiamen Hongye Company, Xiamen 361026, China
3 College of Applied Sciences of Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 2297KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决聚羧酸减水剂对泥土的敏感性问题,先采用甲基烯丙基聚氧乙烯醚(HPEG)、丙烯酸(AA)为反应单体,过硫酸铵(APS)为氧化剂,化合物C为还原剂,通过自由基共聚反应制备了未改性聚羧酸减水剂,并通过正交试验设计确定了最优减水率的合成条件,再以甲基丙烯磺酸钠(MAS)、磷酸类功能单体(PFM)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)和β-环糊精马来酸单酯(β-CD-MAH)作为功能性单体材料,与以上原材料制备了具有不同单种官能团的改性聚羧酸减水剂。采用含泥与未含泥水泥净浆试验测试各改性减水剂的分散保持性,得出了不同减水剂对泥土的敏感性。实验结果表明,与未用功能性单体改性的减水剂相比,除经AMPS改性后的减水剂对泥土敏感性提高外,其余三种减水剂对泥土的敏感性均降低,其中经β-环糊精改性的减水剂对泥土敏感性显著降低,采用红外光谱对β-CD-MAH和β-环糊精改性减水剂的结构进行了表征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李悦
赵冰垠
黄舟
吴玉生
金彩云
蔡博群
关键词:  官能团改性  泥土敏感性  β-环糊精    
Abstract: The unmodified polycarboxylate superplasticizer prepared by free radical copolymerization methyl allyl polyoxyethylene ether (HPEG) and acrylic acid (AA) were used as reaction monomers, ammonium persulfate (APS) as oxidant and compound C as reductant. The optimum synthetic conditions of polycarboxylate superplasticizer were determined by orthogonal design, then sodium methacrylic sulfonate (MAS), phosphoric acid functional monomer (PFM), 2-acrylamide-2-methylpropionic sulfonic acid (AMPS) and β-cyclodextrin maleic acid monoester (β-CD-MAH) used as functional monomer materials and polycarboxylate superplasticizer with different functional groups were prepared with the above raw materials. The dispersion and retention of modified superplasticizer were tested by using cement paste with and without clay, then the sensitivity of different superplasticizer to clay was obtained. The experimental results show that compared with the polycarboxylate superplasticizer wit-hout functional monomer modification, except the sensitivity of AMPS modified polycarboxylate superplasticizer to clay, the sensitivity of the other three polycarboxylate superplasticizer to clay decreases. Among them, the sensitivity of the polycarboxylate superplasticizer modified by β-cyclodextrin to clay decreases significantly. Infrared spectroscopy is used to detect β-CD-MAH and polycarboxylate superplasticizer modified by β-cyclodextrin was characterized.
Key words:  functional group modification    clay sensitivity    β-cyclodextrin
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51808015);北京市百千万人才工程培养经费资助项目(2018A37)
通讯作者:  liyue@bjut.edu.cn   
作者简介:  李悦,博士,北京工业大学教授,博士研究生导师。研究方向为高性能混凝土材料和新型建筑材料。入选过北京市百千万人才工程、北京市长城学者、教育部新世纪优秀人才等。主持国家和省部级科研项目30多项,发表论文200多篇,其中SCI论文60余篇;以第一完成人授权发明专利23件,出版专著2部。
引用本文:    
李悦, 赵冰垠, 黄舟, 吴玉生, 金彩云, 蔡博群. 低泥土敏感性聚羧酸减水剂的制备[J]. 材料导报, 2020, 34(22): 22185-22189.
LI Yue, ZHAO Bingyin, HUANG Zhou, WU Yusheng, JIN Caiyun, CAI Boqun. Preparation of Low Clay Sensitive Polycarboxylate Superplasticizer. Materials Reports, 2020, 34(22): 22185-22189.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090124  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22185
1 Feng J J, Wei Z Y. Ready-mixed Concrete,2016(9),27(in Chinese).逄建军,魏中原.商品混凝土,2016(9),27.2 Liu X L, Gan F P, Wu X P, et al. Fujian Building Materials,2015(11),12(in Chinese).刘兴龙,甘扶平,吴晓鹏,等.福建建材,2015(11),12.3 Li X D, Li X Y, Hu H W, et al. New Building Materials,2017,44(8),29(in Chinese).李晓东,李晓燕,胡红伟,等.新型建筑材料,2017,44(8),29.4 Song Z B, Li H Q, Li T, et al. Concrete,2016(9),100(in Chinese).宋作宝,李慧群,李婷,等.混凝土,2016(9),100.5 Tregger N, Pakula M, Shah S, et al. Cement and Concrete Research,2010,40(3),384.6 Collepardi M. Cement and Concrete Composites,1998,20(2-3),103.7 Bai X C, Dong X, Guo Q Q, et al. Concrete World,2018(10),70(in Chinese).白晓成,董勋,郭强强,等.混凝土世界,2018(10),70.8 Luo Z C, Jin T S, Li Q Q, et al. Comprehensive Utilization of Fly Ash, 2016 (5), 37(in Chinese).骆志超,靳通收,李茜茜,等.粉煤灰综合利用,2016(5),37.9 Zhan H, Wang Y K, Zhao F, et al. Concrete, 2015(3),102(in Chinese).詹洪,王友奎,赵帆,等.混凝土,2015(3),102.10 Pan R N, Zuo Y F. Commodity Concrete,2011(1),40(in Chinese).潘瑞娜,左彦峰.商品混凝土,2011(1),40.11 Mar T, Miriam L, Belen G, et al. Construction and Building Materials,2013,48,628.12 Lei L, Plank J.Cement and Concrete Research,2012,42(10),1299.13 Zhu H J, Zhang G H, He Z Q, et al. Chemical Industry and Engineering Progress,2016,35(9),2920(in Chinese).朱红姣,张光华,何志琴,等.化工进展,2016,35(9),2920.14 Ye C B, Chen Q Q, Xu L F, et al. Residential & Real Estate,2015(25),171(in Chinese).叶慈彪,陈倩倩,徐丽芬,等.住宅与房地产,2015(25),171.15 Sakai E, Atarashi D, Daimon M. JCA Proceedings of Cement & Concrete, 2005,58,387.
[1] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[2] 王景昌, 赵宇, 苗宏雨, 赵启成, 詹世平. 超临界二氧化碳辅助制备β-环糊精-药物包合物的研究进展[J]. 材料导报, 2019, 33(Z2): 542-546.
[3] 胡银春, 程一竹, 王仁虎, 殷萌, 魏延, 杜晶晶, 黄棣, 陈维毅. 静电纺Ag@MOF-5/β-CD抗菌纤维膜的制备及性能[J]. 材料导报, 2019, 33(22): 3825-3828.
[4] 唐芮枫, 王子明, 何欢, 张琳, 蔡扬扬, 王杰. 聚羧酸系减水剂复配β-环糊精对高贝利特硫铝酸盐水泥性能的影响[J]. 材料导报, 2018, 32(22): 4000-4005.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed