Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9019-9027    https://doi.org/10.11896/cldb.19050198
  材料与可持续发展(三)—环境友好材料与环境修复材料* |
气凝胶吸油材料的研究进展
刘伟1,2, 崔升1,2,3, 李建平4, 叶欣1,2, 尚思思1,2, 杨照军4, 沈晓冬1,2,3
1 南京工业大学材料科学与工程学院,南京 211800
2 江苏先进无机功能复合材料协同创新中心,南京 211800
3 宿迁市南京工业大学新材料研究院,宿迁 223800
4 宿迁市美达净化科技有限公司,宿迁 223800
Recent Advances of Aerogels Based Oil Adsorption Materials
LIU Wei1,2, CUI Sheng1,2,3, LI Jianping4, YE Xin1,2, SHANG Sisi1,2, YANG Zhaojun4, SHEN Xiaodong1,2,3
1 College of Materials Science and Engineering, Nanjing Tech University,Nanjing 211800, China
2 Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211800, China
3 Suqian Advanced Materials Institute, Nanjing Tech University, Suqian 223800, China
4 Suqian Meida Purification Technology Co., Ltd, Suqian 223800, China
下载:  全 文 ( PDF ) ( 7861KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 油类污染给水质带来了严重的破坏,其治理方式一直是国内外的研究热点。燃烧、微生物降解、吸附法等常被用在油类污染的治理中,其中吸附法在吸附油类时因成本低、效率高、易于回收处理,同时对环境没有负面影响,引起了研究者的广泛关注。
对于传统的吸附材料,如木棉纤维、谷物秸秆等天然有机吸附剂吸油能力低、亲水性差;硅藻土和沸石等无机吸附剂表现出较差的可浮性和缓慢的动力学;吸油树脂、聚丙烯纤维等合成有机吸附剂是非生物降解的。因此,迫切需要开发具有优良的选择吸附性、高吸附能力、适当的可回收性的吸附剂。与传统的吸附材料相比,气凝胶用于油类污染物的吸附具有质量轻、吸附量大、高选择吸附性等优点,成为近年来的研究热点。
具有吸油性能的气凝胶主要包括二氧化硅气凝胶、生物质气凝胶、碳气凝胶和石墨烯气凝胶。上述四种气凝胶吸油材料各有优缺点,二氧化硅气凝胶成本低,但其吸附量远低于其他类别的气凝胶。生物质气凝胶来源广、环境友好,但机械强度低、易碎。碳气凝胶具有化学惰性,不易被污染,但是设备和工艺复杂,且有些原料有毒。石墨烯气凝胶的吸附量最大,但是高成本限制了其大规模使用。研究人员通过不同材料间的复合、原料的选择和工艺的简化,推进了气凝胶在实际油污处理中的应用。
本文总结了各类气凝胶在吸油方面的研究进展,介绍了气凝胶的改性制备过程和吸油性能研究,对比了有机/无机硅基气凝胶和石墨烯气凝胶对油类的吸附性能与吸附动力学,并对气凝胶吸油材料未来的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘伟
崔升
李建平
叶欣
尚思思
杨照军
沈晓冬
关键词:  气凝胶  制备  吸油  疏水改性  动力学    
Abstract: Oil pollution has caused serious damage to water, and its treatment has always been a research hotspot at domestic and abroad. In-situ bur-ning, microbial degradation, and adsorption methods are often used in the treatment of oil pollution. Among them, the adsorption of oil causes widespread concern due to low cost, high efficiency, easy to recycle, and has no negative impact on the environment.
Traditional oil adsorption materials, natural organic adsorbents such as kapok fiber has low oil absorption capacity and poor hydrophilicity, inorganic adsorbents such as zeolite exhibit poor floatability and slow kinetics, Synthetic organic adsorbents such as polypropylene fibers are non-biodegradable. Therefore, there is an urgent need to develop an adsorbent having excellent selective adsorption, high adsorption capacity, and appropriate recyclability. Compared with traditional adsorption materials, aerogels have the advantages of light weight, large adsorption capacity and high selective adsorption, which have become the hotspots in recent years.
Research on aerogels based oil adsorption materials mainly include: SiO2 aerogel, cellulose aerogel, carbon aerogel and graphene aerogel. The above four aerogel oil-absorbing materials have their own advantages and disadvantages. SiO2 aerogel has low cost, but its oil adsorption capacity is much lower than other types of aerogels. Bio-based aerogel has wide source and environmental friendliness, but it’s mechanical strength is low and fragile. Carbon aerogels are chemically inert and not easily contaminated, but equipment and processes are complex and some raw materials are toxic. Graphene aerogel has the largest adsorption capacity in aerogels, but its high cost limits its large-scale use. Researchers have promoted the application of aerogels in actual oil treatment through the combination of different materials, the choice of raw mate-rials and the simplification of the process.
In this paper, the research progress of various aerogels in oil adsorption is summarized. The modification process and oil absorption perfor-mance of aerogels are introduced. The adsorption properties and adsorption kinetics of organic/inorganic silicon based aerogel and graphene ae-rogel for oils are discussed and compared. In addition, the future development of aerogels based oil adsorption materials are also prospected.
Key words:  aerogel    preparation    oil adsorption    hydrophobic modification    kinetics
                    发布日期:  2020-04-27
ZTFLH:  TB33  
基金资助: 江苏省高校自然科学研究重大项目(15KJA430005);江苏省重点研发(产业前瞻与共性关键技术)项目(BE2016171;BE2017151);宿迁市科技计划项目(M201704)
通讯作者:  scui@njtech.edu.cn   
作者简介:  刘伟,2018年6月毕业于西南科技大学,获得工学学士学位。现为南京工业大学材料科学与工程学院硕士研究生,在崔升教授的指导下进行研究。目前主要研究方向为气凝胶吸油材料。
崔升,南京工业大学材料科学与工程学院教授、博士研究生导师、副院长。江苏省“333工程”中青年科学技术带头人、江苏省青蓝工程优秀青年骨干教师。2002年6月本科毕业于南京工业大学材料科学与工程学院,2006年12月在南京工业大学材料科学与工程学院材料学专业取得博士学位,2007—2008年在南京工业大学进行博士后研究工作。2009—2010年在美国佐治亚理工学院做访问研究学者,主要从事气凝胶、功能复合材料、纳米材料的研究工作,曾获教育部技术发明二等奖等。近年来,在Energy & Environmental Science, Chemical Communications, Cellulos e, Chemical Engineering Journal, Applied Energy等发表论文200余篇。
沈晓冬,南京工业大学材料科学与工程学院教授、博士研究生导师、院长。国家“973”项目首席科学家、教育部长江学者和创新计划团队负责人、国家百千万人才工程国家级人才。兼任江苏省先进无机及复合材料协同创新中心主任,中国绝热节能材料协会副会长、首席专家、气凝胶材料分会会长,中国硅酸盐学会水泥分会副理事长、绝热分会副理事长,江苏省硅酸盐学会副理事长等职务。发表300多篇学术论文,获授权中国发明专利40项,美国、日本与欧洲等发明专利5项,主编专著5部。曾获国家科技进步二等奖、教育部技术发明二等奖、江苏省科技进步一等奖等。主要研究方向为先进硅酸盐材料,包括水泥低能耗制备与高效应用、纳米气凝胶材料研究与应用。
引用本文:    
刘伟, 崔升, 李建平, 叶欣, 尚思思, 杨照军, 沈晓冬. 气凝胶吸油材料的研究进展[J]. 材料导报, 2020, 34(9): 9019-9027.
LIU Wei, CUI Sheng, LI Jianping, YE Xin, SHANG Sisi, YANG Zhaojun, SHEN Xiaodong. Recent Advances of Aerogels Based Oil Adsorption Materials. Materials Reports, 2020, 34(9): 9019-9027.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050198  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9019
1 Joye S B. Science,2015,349(6248),592.
2 Zheng W, Chen J. Nature,2018,560(7717),161.
3 Jiang J, Zhang Q, Zhan X, et al. Chemical Engineering Journal,2019,358,1539.
4 Lee I, Kang S M, Jang S C, et al. Journal of Materials Chemistry A,2019,7(4),1737.
5 Baustian J, Mendelssohn I, Lin Q, et al. Environmental Management,2010,46(5),781.
6 Fritt-Rasmussen J, Brandvik P J, Villumsen A, et al. Cold Regions Science and Technology,2012,72,1.
7 Prince R C. Environmental science & technology,2015,49(11),6376.
8 Beyer J, Trannum H C, Bakke T, et al. Marine Pollution Bulletin,2016,110(1),28.
9 Wen X L, Cui Z S, Mo J L, et al. Chinese Journal of Applied and Environmental Biology,2015,21(5),798(in Chinese).
文小龙,崔志松,穆景利,等.应用与环境生物学报,2015,21(5),798.
10 Lee J, Han I, Kang B R, et al. Marine Pollution Bulletin,2017,114(1),296.
11 Mapelli F, Scoma A, Michoud G, et al. Trends in Biotechnology,2017,35(9),860.
12 Ge J, Zhao H Y, Zhu H W, et al. Advanced Materials,2016,28(47),10459.
13 Jayaramulu K, Geyer F, Petr M, et al. Advanced Materials,2017,29(12),1605307.
14 Song Y, Zhou J, Fan J B, et al. Advanced Functional Materials,2018,28(32),1802493.
15 Zhu X, Wang X, Liu Y, et al. Journal of Chemical Technology & Biotechnology,2019,94(1),128.
16 Dong T, Xu G, Wang F. Journal of Hazardous Materials,2015,296,101.
17 Lv N, Wang X, Peng S, et al. RSC Advances,2018,8(53),30257.
18 Pachathu A, Ponnusamy K, Kizhakkuveettil S N, et al. Bioremediation Journal,2016,20(2),153.
19 Tang M, Zhang R, Pu Y. Fibers and Polymers,2018,19(5),949.
20 Li J, Guan P, Zhang Y, et al. Separation and Purification Technology,2017,174,275.
21 Sakthivel T, Reid D L, Goldstein I, et al. Environmental Science & Technology,2013,47(11),5843.
22 Wen Q, Di J, Jiang L, et al. Chemical Science,2013,4(2),591.
23 Du Y, Fang P, Chen J, et al. Polymers for Advanced Technologies,2016,27(3),393.
24 Bu X, Lu Y, Chen S, et al. Chemical Engineering Journal,2019,355,299.
25 Renuka S, Rengasamy R, Das D. Journal of Industrial Textiles,2016,46(4),1121.
26 Raman P K Y, Jain A, Ramkumar S. Tappi Journal,2017,16(9),507.
27 Yun L, Zhao J, Kang X, et al. Journal of Sol-Gel Science and Technology,2017,83(1),197.
28 Zhan W, Yu S, Gao L, et al. ACS Applied Materials & Interfaces,2017,10(1),1093.
29 Li J, Li J, Meng H, et al. Journal of Materials Chemistry A,2014,2(9),2934.
30 Wang T, Sun H, Long J, et al. ACS Sustainable Chemistry & Enginee-ring,2016,4(5),2601.
31 Al-Biloushi M I, Milliman H, Gawryla M D, et al. Journal of Applied Polymer Science,2018,135(6),45844.
32 Jiang J X, Zhang Q H, Zhan X L, et al. Chemical Engineering Journal,2019,358,1539.
33 Wu X, Fan M, Mclaughlin J F, et al. Powder Technology,2018,323,310.
34 He S, Huang D, Bi H, et al. Journal of Non-Crystalline Solids,2015,410,58.
35 Liu Y, Sun J, Yuan J, et al. Inorganic Chemistry Frontiers,2018,5(8),1894.
36 Zhang Y, Wang J, Wei Y, et al. New Journal of Chemistry,2017,41(5),1953.
37 Fei Z F, Yang Z C, Li K F, et al. Acta Materiae Compositae Sinica,2018,35(9),2566(in Chinese).
费志方,杨自春,李昆锋,等.复合材料学报,2018,35(9),2566.
38 Ma Q, Liu Y, Dong Z, et al. Journal of Applied Polymer Science,2015,132(15),41770.
39 He J, Zhao H, Li X, et al. Journal of Hazardous Materials,2018,346,199.
40 He S, Cheng X, Li Z, et al. Journal of Materials Science,2016,51(3),1292.
41 Yang W J, Yuen A C Y, Li A, et al. Cellulose,2019,26(11),6449.
42 Yang J, Xia Y, Xu P, et al. Cellulose,2018,25(6),3533.
43 Liu H Z, Chen Y F, Geng B Y, et al. Acta Polymerica Sinica,2016(5),545(in Chinese).
刘宏治,陈宇飞,耿璧垚,等.高分子学报,2016(5),545.
44 Zhao L, Li L, Wang Y, et al. Applied Physics A,2018,124(1),9.
45 Cheng H, Gu B, Pennefather M P, et al. Materials & Design,2017,130,452.
46 Zhai T, Zheng Q, Cai Z, et al. Carbohydrate Polymers,2016,148,300.
47 Mulyadi A, Zhang Z, Deng Y. ACS Applied Materials & Interfaces,2016,8(4),2732.
48 Li Z, Shao L, Hu W, et al. Carbohydrate Polymers,2018,191,183.
49 Zhang H, Li Y, Shi R, et al. Carbohydrate Polymers,2018,200,611.
50 Ghasemi O, Mehrdadi N, Baghdadi M, et al. Energy Sources Part a-Recovery Utilization and Environmental Effects,DOI:10.1080/15567036.2019.1618995.
51 Guo X, Qu L, Zhu S, et al. Water Environment Research,2016,88,768.
52 Meng C, Zhang H, Zhang S, et al. Journal of Sol-Gel Science and Technology,2018,87(3),704.
53 Dai J G, Tian Q F, Sun Q Q, et al. Composites Part B-Engineering,2019,160,480.
54 Roopan S M. International Journal of Biological Macromolecules,2017,103,508.
55 Yang W, Kenny J M, Puglia D. Industrial Crops and Products,2015,74,348.
56 Chen C, Li F, Zhang Y, et al. Chemical Engineering Journal,2018,350,173.
57 Jiang J, Zhang Q, Zhan X, et al. ACS Sustainable Chemistry & Enginee-ring,2017,5(11),10307.
58 Zhang Z B, Dong Z M, Wang X X, et al. Chemical Engineering Journal,2019,370,1376.
59 Yu M, Han Y, Li J, et al. Journal of Porous Materials,2018,25(3),657.
60 Lei E, Li W, Ma C, et al. Materials Chemistry and Physics,2018,214,291.
61 Ji J, Han X, Li L, et al. Journal of Nanoscience and Nanotechnology,2018,18(7),4910.
62 Li L, Li B, Sun H, et al. Journal of Materials Chemistry A,2017,5(28),14858.
63 Dai J, Zhang R, Ge W, et al. Materials & Design,2018,139,122.
64 Yuan D, Zhang T, Guo Q, et al. Chemical Engineering Journal,2018,351,622.
65 Li L, Hu T, Sun H, et al. ACS Applied Materials & Interfaces,2017,9(21),18001.
66 Yang J, Xu P, Xia Y, et al. Cellulose,2018,25(10),5863.
67 Zhang Z, Wang X D, Wu Y, et al. Journal of the Chinese Ceramic Society,2018,46(10),1426(in Chinese).
张泽,王晓栋,吴宇,等.硅酸盐学报,2018,46(10),1426.
68 Xiao J, Lv W, Song Y, et al. Chemical Engineering Journal,2018,338,202.
69 Zhao D, Yu L, Liu D. Materials,2018,11(4),641.
70 Huang T, Dai J, Yang J H, et al. Diamond and Related Materials,2018,86,117.
71 Mi H Y, Jing X, Politowicz A L, et al. Carbon,2018,132,199.
72 Ren R P, Wang Z, Ren J, et al. Journal of Materials Science,2019,54(7),5918.
73 Mi H Y, Jing X, Huang H X, et al. Industrial & Engineering Chemistry Research,2018,57(5),1745.
74 Rahmani Z, Rashidi A M, Samadi M T, et al. Journal of Industrial and Engineering Chemistry,2018,61,416.
75 Morales-Florez V, Piñero M, Braza V, et al. Journal of Sol-Gel Science and Technology,2017,81(2),600.
76 Huang Y F, Liu H E, Wang Z Y, et al. Journal of Chemical Engineering of Chinese Universities,2018,32(4),940(in Chinese).
黄扬帆,刘会娥,王振有,等.高校化学工程学报,2018,32(4),940.
[1] 闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
[2] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[3] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[4] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[5] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[6] 金嘉炜, 刘传扬, 张冶, 刘国伟, 楚增勇, 李公义. 金纳米线的制备及传感应用研究进展[J]. 材料导报, 2020, 34(5): 5085-5095.
[7] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[8] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[9] 郭丽婷, 李晓延, 姚鹏, 李扬. 电场作用下Cu/Cu3Sn界面原子扩散行为的分子动力学模拟[J]. 材料导报, 2020, 34(2): 2137-2141.
[10] 宋鹏宇, 邓永岩, 韩海杰, 金桥. 活性氧可激活的聚合物纳米载体用于光动力-化疗联合治疗的研究[J]. 材料导报, 2020, 34(10): 10166-10170.
[11] 任秦博,王景平,杨立,李翔,王学川. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 1080-1094.
[12] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[13] 刘羽, 肖红星, 张翔, 曾强, 刘喆, 冷科, 马亮. UO2-Er2O3燃料热物理性能的分子动力学模拟[J]. 材料导报, 2019, 33(Z2): 130-133.
[14] 胡贵生, 章超, 钱晨阳, 文建新. 钼尾矿资源综合利用最新研究进展概述[J]. 材料导报, 2019, 33(Z2): 233-238.
[15] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed