Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24127-24131    https://doi.org/10.11896/cldb.19120202
  金属与金属基复合材料 |
外加磁场对等离子熔覆Fe313合金涂层组织性能的影响
时运, 胡荣祥, 马骏, 杜培松, 陈曦, 杜晓东
合肥工业大学材料科学与工程学院,合肥230009
Effect of External Magnetic Field on Microstructure and Properties of Plasma Cladding Fe313 Alloy Coating
SHI Yun, HU Rongxiang, MA Jun, DU Peisong, CHEN Xi, DU Xiaodong
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
下载:  全 文 ( PDF ) ( 8418KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用外加磁场辅助等离子熔覆技术在45钢表面制备了Fe313合金涂层。利用OM、SEM、EDS和XRD等表征手段对涂层进行了显微组织和物相组成分析。采用维氏硬度计测试了涂层的显微硬度,通过摩擦磨损实验研究了涂层的磨损性能。结果表明:外加磁场后,在电磁搅拌的作用下,涂层中粗大的柱状晶转变为细小的等轴晶,晶粒细化效果明显。涂层显微组织为亚共晶组织,包含初生过饱和(Fe,Cr)固溶体相以及枝间共晶碳化物相(M7C3型碳化物),外加磁场使得共晶碳化物更为细小均匀地分布在涂层中。此外,外加磁场后制得的涂层的显微硬度明显大于未外加磁场时制得的涂层的显微硬度,耐磨性也得到明显改善。在载荷为50 N时,外加磁场电流为0 A和5 A制得的涂层的磨损机制为粘着磨损,外加电流为7 A和9 A制得的涂层的磨损机制为磨粒磨损和轻微粘着磨损混合磨损机制;当载荷为100 N和150 N时,外加磁场电流为0 A和5 A制得的涂层粘着磨损加剧,外加电流为7 A和9 A制得的涂层磨损机制由混合磨损机制转变为粘着磨损机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
时运
胡荣祥
马骏
杜培松
陈曦
杜晓东
关键词:  等离子熔覆技术  磁场辅助  组织细化  表面改性  摩擦磨损    
Abstract: Fe313 alloy coating was prepared on the surface of 45 steel by using external magnetic field assisted plasma cladding technology. OM(optical microscope), SEM(scanning electron microscope), EDS(energy disperse spectroscopy) and XRD(X-ray powder diffractometer) were used to analyze the microstructure and phase composition of the coating. The microhardness of the coating was tested using a Vickers hardness tester, and the abrasion performance of the coating was studied by friction and wear experiments. The results show: After applying a magnetic field, under the action of electromagnetic stirring, the coarse columnar crystals in the coating are transformed into fine equiaxed crystals, and the grain refining effect is obvious. The coating presents a hypoeutectic structure, including a primary supersaturated (Fe, Cr) solid solution phase and an inter-dendrites eutectic carbide phase (M7C3 type carbide). The external magnetic field makes the eutectic carbide more finely and uniformly distributed on the coating. The microhardness and abrasion resistance of the coatings prepared after the application of a magnetic field were significantly better than those of the coatings prepared without a magnetic field. At a load of 50 N, the wear mechanism of the coating made by the applied magnetic field current of 0 A and 5 A is adhesive wear, and the wear mechanism of the coating made by the applied current of 7 A and 9 A is mixed wear mechanism of abrasive grain wear and slight adhesive wear. When the load is 100 N and 150 N, the adhesive wear of the coating made by the applied magnetic field current of 0 A and 5 A is intensified, and the wear mechanism of the coating made by the applied current of 7 A and 9 A changes from the mixed wear mechanism to the adhesive wear mechanism.
Key words:  plasma cladding    magnetic field assist    organization refinement    surface modification    friction and wear
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TG174.4  
基金资助: 合肥工业大学2018年国家级大学生创新创业训练计划项目(201810359011);长丰-合肥工业大学产业引导资金(JZ2019QTXM0281)
通讯作者:  hfutdxd@126.com   
作者简介:  时运,2017年就读于合肥工业大学材料学硕士专业。主要从事金属材料表面强韧化研究。
杜晓东,2006年毕业于合肥工业大学材料学专业,获博士学位。现任合肥工业大学材料学院金属材料工程系主任。主要从事金属材料表面强韧化和铝合金领域的研究。
引用本文:    
时运, 胡荣祥, 马骏, 杜培松, 陈曦, 杜晓东. 外加磁场对等离子熔覆Fe313合金涂层组织性能的影响[J]. 材料导报, 2020, 34(24): 24127-24131.
SHI Yun, HU Rongxiang, MA Jun, DU Peisong, CHEN Xi, DU Xiaodong. Effect of External Magnetic Field on Microstructure and Properties of Plasma Cladding Fe313 Alloy Coating. Materials Reports, 2020, 34(24): 24127-24131.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120202  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24127
1 Yan D K, Zhang J X, Tang M Q, et al. 2015, 44(4), 20(in Chinese).
严大考, 张洁溪, 唐明奇, 等. 热加工工艺, 2015, 44(4), 20.
2 Shi Y, Du X D, Zhuang P C, et al. 2019, 48(12), 23(in Chinese).
时运, 杜晓东, 庄鹏程,等. 表面技术, 2019, 48(12), 23.
3 Xue H T, Wang H Q, Qin W, et al. Welding Technology, 2017, 46(3), 6 (in Chinese).
薛海涛, 王汉清, 靳伟, 等. 焊接技术, 2017, 46(3), 6.
4 Shi Y, Du X D , Zhuang P C, et al. Materials Research Express, 2019, 6(11), 1165h7.
5 Wang S F, Li H Q, Chen X, et al. Materials Science Engineering A, 2010, 528(1), 397.
6 Gao G F, Guo Z L, Li K, et al. Heat Treatment of Metals, 2019, 44(1), 172(in Chinese).
高国富, 郭子龙, 李康, 等. 金属热处理, 2019, 44(1), 172.
7 Wang Y Y, Zhou X Y, Jin H, et al. Materials Reports B:Research Papers, 2019, 33(3), 1011(in Chinese).
王一雍, 周新宇, 金辉, 等. 材料导报:研究篇, 2019, 33(3), 1011.
8 Lai Y B, Wang D Y, Yang B, et al. Surface Technology, 2019, 48(6), 314(in Chinese).
来佑彬, 王冬阳, 杨波, 等. 表面技术, 2019, 48(6), 314.
9 Huang J Y, Lu J T, Zhou Y L, et al. Surface Technology, 2018, 47(4), 42(in Chinese).
黄锦阳, 鲁金涛, 周永莉, 等. 表面技术, 2018, 47(4), 42.
10 Liu Z J, Li L C, Zong L, et al. Transactions of the China Welding Institution, 2012, 33(2), 53(in Chinese).
刘政军, 李乐成, 宗琳, 等. 焊接学报, 2012, 33(2), 53.
11 Liu F, Yin J, Shao Q, et al.Materials Reports B:Research Papers, 2019, 33(1), 293(in Chinese).
刘飞, 尹健, 邵琦,等. 材料导报:研究篇, 2019, 33(1), 293.
12 Zheng L J, Fu Y M, Zong L, et al.Materials Reports B:Research Papers, 2018, 32(3), 905 (in Chinese).
郑丽娟, 付宇明, 宗磊,等. 材料导报:研究篇, 2018, 32(3), 905.
13 Xu H, Zheng Q G, Ding Z H, et al. Laser Technology, 2005(5), 449(in Chinese).
许华, 郑启光, 丁周华, 等. 激光技术, 2005(5), 449.
14 Cai C X, Liu H X, Jiang Y H, et al. Tribology, 2013, 33(3), 229(in Chinese).
蔡川雄, 刘洪喜, 蒋业华, 等. 摩擦学学报, 2013, 33(3), 229.
15 Yu B H, Hu X H, Wu Y E, et al.Chinese Journal of Lasers, 2010, 37(10), 2672(in Chinese).
余本海, 胡雪惠, 吴玉娥, 等. 中国激光, 2010, 37(10), 2672.
16 Sun J G. Research on principles of influence of intermittent alternative magnetic field on microstructure and properties of plasma arc surfacing layer. Ph.D. Thesis, Shenyang University of Technology, China, 2009 (in Chinese).
孙景刚. 间歇交变磁场对等离子堆焊金属组织及性能影响机理的研究. 博士学位论文, 沈阳工业大学, 2009.
17 Wang W, Liu Q, Yang G, et al. Chinese Journal of Lasers, 2015, 42(2), 48(in Chinese).
王维, 刘奇, 杨光, 等. 中国激光, 2015, 42(2), 48.
18 Liu H X, Ji S W, Jiang Y H, et al. High Power Laser and Particle Beams, 2012, 24(12), 2901(in Chinese).
刘洪喜, 纪升伟, 蒋业华, 等. 强激光与粒子束, 2012, 24(12), 2901.
19 He Y N, Song Q, Sun K, et al. Surface Technology, 2019, 48(3), 126(in Chinese).
何亚楠, 宋强, 孙康, 等. 表面技术, 2019, 48(3), 126.
[1] 李晓雨, 李翠玉, 苏瑞. 多巴胺掺杂碳纳米管对芳纶纤维界面性能的影响[J]. 材料导报, 2020, 34(Z2): 562-566.
[2] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[3] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[4] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[5] 黄文豪, 陶平均, 龙德武, 张超汉, 朱坤森, 杨元政. 低树脂基NAO型盘式刹车片摩擦材料的制备及摩擦学性能[J]. 材料导报, 2020, 34(Z1): 563-566.
[6] 徐骏, 朱立坚, 刘刚, 宋炳坷. DLC-PFPE固液复合润滑体系的摩擦磨损性能研究[J]. 材料导报, 2020, 34(Z1): 567-571.
[7] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[8] 刘亮, 汪志太, 杨伟, 王振军, 蔡长春, 余欢. 铜模喷铸Mg-6Al-1Y合金快冷组织形成及其固溶行为[J]. 材料导报, 2020, 34(20): 20066-20069.
[9] 蒋晔, 颜建辉, 李茂键. 不同SPS烧结温度下制备WS2-Cu复合材料及其摩擦磨损性能[J]. 材料导报, 2020, 34(18): 18025-18029.
[10] 王宇, 曾伟, 韩靖, 戴光泽, 赵君文, 徐忠宣. 氮碳共渗对ER8车轮钢高温摩擦磨损性能的影响[J]. 材料导报, 2020, 34(18): 18119-18124.
[11] 王玮华, 谢发勤, 吴向清, 王少青, 姚小飞. 火箭橇滑块超声速、大载荷摩擦磨损失效机理[J]. 材料导报, 2020, 34(16): 16136-16139.
[12] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[13] 魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
[14] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[15] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed