Abstract: Effects of rare earth Y on quenched microstructure of spray-casted Mg-6Al alloy and its thermal stability behavior were investigated by vacuum induction melting and isothermal solid solution treatment. The results show that meta-stable Mg24Y5 forms during the non-equilibrium solidification of Mg-6Al-1Y, which promotes the grain refinement and suppresses the solute segregation. Consequently, the microstructure with fine spherical grain can be obtained. Cooling rate is increased with decreasing the inner diameter of copper mould. As a result, grain refinement is strengthened and the mean grain size is less than 2 μm as for inner diameter of 2 mm. The addition of Y improves the transformation temperature of grain boundary β phase from 425.57 ℃ to 429.46 ℃, which is beneficial to the thermal stability of quenched Mg-6Al alloy. The strengthening effect ascribed to grain refinement with high cooling rate favors the increase of micro-hardness of quenched Mg-6Al-1Y. The subsequent solid solution treatment with 400 ℃/2 h reduces its hardness value due to the dissolution of β phase.
刘亮, 汪志太, 杨伟, 王振军, 蔡长春, 余欢. 铜模喷铸Mg-6Al-1Y合金快冷组织形成及其固溶行为[J]. 材料导报, 2020, 34(20): 20066-20069.
LIU Liang, WANG Zhitai, YANG Wei, WANG Zhenjun, CAI Changchun, YU Huan. Quenched Microstructure of Spray-casted Mg-6Al-1Y Alloy and Its Solid Solution Behavior. Materials Reports, 2020, 34(20): 20066-20069.
1 Zhang H, Liu C Q, Zhu Y M, et al. Acta Materialia, 2018, 152, 96. 2 Zhong L X, Yang M B. Journal of Chongqing University of Technology (Natural Science), 2019(1), 99(in Chinese). 钟罗喜, 杨明波. 重庆理工大学学报(自然科学), 2019(1), 99. 3 Jin W N, Zhang G F, Zeng X, et al. Failure Analysis and Prevention, 2013, 8(1), 25(in Chinese). 金伟男, 张贵锋, 曾祥, 等. 失效分析与预防, 2013, 8(1), 25. 4 Yin H M, Yang W, Wang X, et al. Rare Metal Materials and Enginee-ring, 2018(6), 1848(in Chinese). 殷海眯, 杨伟, 王祥, 等. 稀有金属材料与工程, 2018(6), 1848. 5 Chrominski W, Lewandowska M. Acta Materialia, 2016, 103, 547. 6 Wu Z, Jin P P, Wang J H, et al. Foundry Technology, 2014, 35(6), 1121(in Chinese). 吴震, 金培鹏, 王金辉, 等.铸造技术, 2014, 35(6), 1121. 7 Wu J Y, Shan L M, Tang A T, et al. The Chinese Journal of Nonferrous Metals, 2017, 27(9), 1757(in Chinese). 吴菊英, 单丽梅, 汤爱涛, 等. 中国有色金属学报, 2017, 27(9), 1757. 8 Chang J, Wang H P, Zhou K, et al. Applied Physics A, 2012,109,139. 9 Paliwal M, Jung I H. Acta Materialia, 2013, 61(13), 4848. 10 Zhang Z Y, Yu H S, Wang S Q, et al. Journal of Materials Engineering, 2010(5), 72(in Chinese). 张振亚, 于化顺, 王少卿, 等. 材料工程, 2010(5), 72. 11 Ayman E, Junko U, Katsuyoshi K. Acta Materialia, 2011, 59(1), 273. 12 Yang W, Chen S H, Zhang S Y, et al. The Chinese Journal of Nonferrous Metals, 2014(3), 593(in Chinese). 杨伟, 陈寿辉, 张守银, 等. 中国有色金属学报, 2014(3), 593. 13 Xu J F, Zhai Q Y, Yuan S.The Chinese Journal of Nonferrous Metals, 2004, 14(6), 939(in Chinese). 徐锦锋, 翟秋亚, 袁森. 中国有色金属学报, 2004, 14(6), 939. 14 Yang W, Yin H M, Shang J L, et al. The Chinese Journal of Nonferrous Metals, 2017, 27(2), 243(in Chinese). 杨伟, 殷海眯, 商景利, 等.中国有色金属学报, 2017, 27(2), 243. 15 Wang Z T, Liu L Z. Transactions of Materials and Heat Treatment, 2015, 36(7), 222(in Chinese). 王忠堂, 刘立志.材料热处理学报, 2015, 36(7), 222. 16 Huang Z H, Guo X F, Zhang Z M. Rare Metal Materials and Enginee-ring, 2005, 34(3), 375(in Chinese). 黄正华, 郭学锋, 张忠明. 稀有金属材料与工程, 2005, 34(3), 375. 17 Song M, Du K, Wen S P, et al. Acta Materialia, 2014, 69, 236. 18 Gao H W, Hu X J, Li C M, et al. Foundry, 2005(12), 1269(in Chinese). 高洪吾, 胡晓菊, 李长茂, 等. 铸造, 2005(12), 1269. 19 Wang M X, Zhou H, Wang L, et al. Journal of Jilin University, 2007(1), 6(in Chinese). 王明星, 周宏, 王林, 等.吉林大学学报, 2007(1), 6. 20 Sheng L Y, Du B N, Wang B J, et al.Strength of Materials, 2018, 50(1), 184. 21 Greer A L, Bunn A M, Tronche A, et al. Acta Materialia, 2000, 48(11), 2823. 22 Inoue A, Nakamura T, Nishiyama N, et al. Materials Transactions JIM, 1992, 33(10), 937.