Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10132-10137    https://doi.org/10.11896/cldb.19120157
  金属与金属基复合材料 |
固溶处理冷却方式对Cu/Al复合板界面微观组织的影响
刘玉洁1, 蒋显全1, 佘欣未1,2, 王浦全3, 冉洋4, 彭和3, 冉贞德5
1 西南大学材料与能源学院,重庆 400715
2 重庆市科学技术研究院新材料研究中心,重庆 401123
3 西南大学工程技术学院,重庆 400715
4 重庆市光学机械研究所,重庆 401122
5 重庆齿轮箱有限责任公司,重庆 402260
Effect of Cooling Method on Interface Microstructure of Cu/Al Clad Sheet by Solution Treatment
LIU Yujie1, JIANG Xianquan1, SHE Xinwei1,2, WANG Puquan3, RAN Yang4, PENG He3, RAN Zhende5
1 College of Materials and Energy, Southwest University, Chongqing 400715, China
2 Advanced Materials Research Center, Chongqing Academy of Science and Technology, Chongqing 401123, China
3 College of Engineering and Technology, Southwest University, Chongqing 400715, China
4 Chongqing Institute of Optics and Mechanics, Chongqing 401122, China
5 Chongqing Gearbox Co., Ltd., Chongqing 402260, China
下载:  全 文 ( PDF ) ( 5930KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用光学显微镜、扫描电镜、X射线衍射等手段研究了冷却方式(水冷、空冷和炉冷)对Cu/Al复合板界面微观组织的影响,利用显微硬度仪测试了冷却方式对铸轧Cu/Al复合板力学性能的影响。实验结果表明:铸轧复合板界面形成Al2Cu、AlCu、Cu9Al4、AlCu3四种金属间化合物,经500 ℃×2 h固溶处理后,界面扩散层厚度增加,形成Al2Cu、AlCu、Al2Cu3、Cu9Al4、AlCu3五种金属间化合物。水冷和空冷界面扩散层产生孔洞,炉冷孔洞基本消失,解释了孔洞形成原因及变化过程,孔洞等缺陷会削弱界面层的结合强度。铸轧复合板界面扩散层厚度小、硬度低;经固溶处理后,界面扩散层厚度和硬度均增加,并随冷却速度的减小,厚度和硬度进一步增加。剥离过程中,铸轧复合板靠近Al基体断裂,而经固溶处理后的复合板断裂在界面扩散层。随冷却速度的下降,裂纹扩展能力减弱,过厚的金属间化合物不利于复合板的结合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘玉洁
蒋显全
佘欣未
王浦全
冉洋
彭和
冉贞德
关键词:  Cu/Al复合板  固溶处理  界面扩散  金属间化合物  空冷  炉冷  水冷    
Abstract: The effect of cooling mode (water cooling, air cooling, furnace cooling) on the interface microstructure of Cu/Al clad sheet was studied by means of optical microscopy, scanning electron microscopy and X-ray diffraction. And the effect of cooling mode on the mechanical properties of cast rolled Cu/Al clad sheet was tested by microhardness testers. The experimental results indicate that five kinds of intermetallic compounds, i. e. Al2Cu, AlCu, Al2Cu3, Al4Cu9, AlCu3 were formed at the interface layer after solution treatment at 500 ℃×2 h. There can be found holes in the diffusion layers after water cooling and air cooling, but nearly no holes on the interface after furnace cooling. The reason of holes forming and the change process of holes were studied. The defects such as holes will weaken the bonding strength of interface layer. The interfacial diffusion layer of the as-cast and rolled sheet is thin and the hardness is low. After solution treatment the thickness and hardness will be increased, and a lower cooling rate can result in a thicker and harder diffusion layer. During the stripping process, the cast and rolled sheet fractured near the Al matrix, and the solution-treated sheet fractured at the interface diffusion layer. With the decrease of the cooling rate, the crack propagation ability gets weaken, which indicates that excessively thick intermetallic compounds are not conducive to the combination of the clad sheet.
Key words:  Cu/Al clad sheet    solution treatment    interface diffusion    intermetallic compound    air cooling    furnace cooling    water cooling
                    发布日期:  2020-04-26
基金资助: 国家自然科学基金 (51971183);重庆市自然科学基金 (cstc2019jcyj-msxmX0594); 重庆市技术创新与应用发展项目(cstc2019jscx-mbdxX0036)
通讯作者:  蒋显全,西南大学材料与能源学院二级教授、博导。1992年获中南工业大学硕士学位,2006年获四川大学博士学位,在Electrochimica Acta、Journal of Alloys and Compounds、Materials and Design、Materials Science & Engineering A等杂志发表论文75篇,其中被SCI和EI收录51篇;申请专利71项;获省部级科技奖励一等奖2项,二等奖4项,三等奖4项,其他科技奖励若干。jsq89@swu.edu.cn   
作者简介:  刘玉洁,西南大学材料与能源学院在读硕士研究生。在蒋显全教授的指导下,主要研究领域为铜铝复合材料界面。
引用本文:    
刘玉洁, 蒋显全, 佘欣未, 王浦全, 冉洋, 彭和, 冉贞德. 固溶处理冷却方式对Cu/Al复合板界面微观组织的影响[J]. 材料导报, 2020, 34(10): 10132-10137.
LIU Yujie, JIANG Xianquan, SHE Xinwei, WANG Puquan, RAN Yang, PENG He, RAN Zhende. Effect of Cooling Method on Interface Microstructure of Cu/Al Clad Sheet by Solution Treatment. Materials Reports, 2020, 34(10): 10132-10137.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120157  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10132
1 Chen X H, Zheng X X.China Strategic Emerging Industry 2017, 16(2), 203(in Chinese).
陈小红, 郑兴兴.中国战略新兴产业, 2017, 16(2), 203.
2 Huang C Q. China Engineering Science, 2012, 14(10), 4(in Chinese).
黄崇祺.中国工程科学, 2012, 14(10), 4.
3 Xu G, Zhang Y, Lin M, et al. Nonferrous Metals Processing, 2008, 37(4), 6.
4 Liu S Y, Wang A Q, Lu S J, et al.Materials Review A:Review Papers, 2018, 32 (5),828(in Chinese).
刘帅洋, 王爱琴, 吕世敬, 等.材料导报: 综述篇, 2018, 32 (5), 828.
5 Xia Z H, Yao H, Sun Y Q, et al. Hot Working Technology, 2016, 45 (22), 24(in Chinese).
夏兆辉, 姚辉,孙谊媊,等. 热加工工艺, 2016, 45 (22),24.
6 Shang Z P, Wang X, Fan G D, et al. China Nonferrous Metals, 2014(13),45(in Chinese).
尚正平, 王项, 范国栋,等.中国有色金属, 2014(13),45.
7 Lu S J, Xie J P, Wang A Q, et al. Special Casting & Nonferrous Alloys, 2017, 37 (8),844(in Chinese).
吕世敬, 谢敬佩, 王爱琴,等.特种铸造及有色合金, 2017, 37 (8),844.
8 Chen X Z.Nonferrous Metal Materials and Engineering, 2017, 38(2),63(in Chinese).
陈兴章.有色金属材料与工程, 2017,38(2),63.
9 Liu T, Liu P, Wang Q D. Materials Review A:Review Papers, 2013,27(10),1(in Chinese).
刘腾, 刘平, 王渠东.材料导报: 综述篇, 2013,27(10),1.
10 Li X B. Study on processing, microstructure and properties of Cu/Al laminated composites. Ph.D. Thesis, Northeastern University, China, 2014(in Chinese).
李小兵. 铜/铝多层复合板的制备与组织性能研究.博士学位论文,东北大学, 2014.
11 Zuo X J. The research on organization structure and property of interfacial diffusion layer of Cu-Al clad sheet. Ph.D. Thesis, Shenyang University of Technology, China, 2017(in Chinese).
左晓姣. Cu/Al复合板界面扩散层组织结构与性能的研究.博士学位论文,沈阳工业大学,2017.
12 Han Y N, Zhang X J, Li L. Materials Review A:Review Papers, 2019, 33 (7), 1198(in Chinese).
韩银娜,张小军,李龙.材料导报: 综述篇, 2019, 33 (7), 1198.
13 Peng H, Chen D L, Bai X F, et al. Journal of Manufacturing Processes, 2019, 37, 91.
14 Wang Puquan, Chen Daolun, Ran Yang, et al. Materials, 2019, 12,3368.
15 Lee Won-Bae, Bang Kuek-Saeng, Jung Seung-Boo. Journal of Alloys and Compounds, 2005, 390(1), 212.
16 Li Hanyan, Chen Wenge, Dong Longlong, et al. Journal of Materials Processing Technology, 2018,252(2), 795.
17 Ma Hengbo, Ren Kexu, Xiao Xiao, et al.Materials Research Express,2019,6(10).
18 Lee K S, Kwon Y N. Transactions of Nonferrous Metals Society of China, 2013,2(23), 341.
19 Zhao Z, Feng Z H. Nonferrous Metal Materials and Engineering, 2016, 37(6), 264(in Chinese).
赵钊, 冯朝辉.有色金属材料与工程, 2016, 37(6), 264.
20 Luo J J, Bai Y P, Li J P, et al. Journal of Xi'an Technological University, 2018, 38(6), 626(in Chinese).
罗佳佳, 白亚平, 李建平,等.西安工业大学学报, 2018, 38(6), 626.
21 Ma W J, Ke C B, Zhou M B, et al. Acta Metallurgica Sinica, 2015, 51(7), 873(in Chinese).
马文婧, 柯常波, 周敏波,等.金属学报, 2015, 51(7), 873.
22 Gao H T, Liu X H, Qi J L, et al. Journal of Materials Processing Techno-logy, 2018, 251, 1.
23 Kim Doosoo, Chang Jong-hyeon, Park Jungil, et al. Journal of Materials Science: Materials in Electronics, 2011, 22(7), 703.
24 Kim J I, Jin S W, Jung J, et al.Korean Journal of Metals and Materials, 2017, 55(6), 372.
25 Pan J S,Tong J M, Tian M B. Fundamentals of materials science, Tsinghua University Press, China, 2011(in Chinese).
潘金生, 仝健民, 田民波. 材料科学基础,清华大学出版社, 2011.
26 Li X B, Zu G Y, Wang P. The Chinese Journal of Nonferrous Metals, 2013,23(5),1201(in Chinese).
李小兵, 祖国胤, 王平. 中国有色金属学报, 2013,23(5), 1201.
27 Xie J P, Liu Z, Wang A Q, et al. Materials Review B: Research Papers, 2019, 33 (10), 1705(in Chinese).
谢敬佩,刘哲,王爱琴,等.材料导报: 研究篇,2019, 33 (10), 1705.
28 Wang Y J, Song R B, Yanagimoto J, et al. Journal of Alloys and Compounds, 2019, 9(801), 573.
29 Kim In-Kyu, Hong Sun Ig. Materials & Design, 2014, 5715, 625.
30 Vahid Yousefi Mehr, Mohammad Reza Toroghinejad, Ahmad Rezaeian, et al. Materials Science and Engineering: A, 2014,601(4), 40.
[1] 刘国平, 王渠东, 蒋海燕. 铜/铝双金属复合材料研究新进展[J]. 材料导报, 2020, 34(7): 7115-7122.
[2] 肖华强, 陈禹伽, 陈维平, 何佳容, 赵思皓. 材料在铝液中熔蚀-磨损行为的研究进展[J]. 材料导报, 2020, 34(7): 7123-7129.
[3] 石全举, 顾振杰, 周圣丰. 激光原位合成NiTi基复合涂层的微结构特征与耐蚀性能[J]. 材料导报, 2020, 34(2): 2110-2116.
[4] 刘卓萌, 刘忠军, 姬帅, 雒设计. Ti5Si3的制备与应用研究进展[J]. 材料导报, 2019, 33(Z2): 175-180.
[5] 彭成, 梁爽, 黄福祥, 钟明君, 冉小杰. 键合丝键合界面研究进展[J]. 材料导报, 2019, 33(Z2): 501-504.
[6] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[7] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[8] 孙阳辉, 艾诚, 张晓峰, 刘林. 镍基单晶高温合金固溶处理制度的研究进展[J]. 材料导报, 2019, 33(21): 3630-3636.
[9] 武靖伟, 张忠科, 车朋卫. 钎料Zn对钛/铝搅拌摩擦钎焊接头组织和性能的影响[J]. 材料导报, 2019, 33(18): 3067-3071.
[10] 李华鑫, 陈俊勇, 乐弦, 向军辉. Al2O3-SiO2复合气凝胶的制备与表征[J]. 材料导报, 2019, 33(18): 3170-3174.
[11] 张昌青, 王维杰, 刘雄波, 金鑫, 秦卓, 荣琛. 铝/钢连续驱动摩擦焊接头力学性能及金属间化合物形态特征[J]. 材料导报, 2019, 33(16): 2740-2745.
[12] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[13] 杨世杰, 李元东, 曹驰, 董澎源, 李嘉铭, 李明. A356覆层温度对AZ31/A356轧制复合板界面组织及力学性能的影响[J]. 材料导报, 2019, 33(14): 2397-2402.
[14] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[15] 张义福, 张华, 况菁, 朱政强, 潘际銮. 铜/铝极耳超声波焊接响应曲面优化分析[J]. 材料导报, 2019, 33(11): 1842-1847.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed