Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 930-936    https://doi.org/10.11896/j.issn.1005-023X.2018.06.014
  材料研究 |
Fe-Cr-Mo-W-V系热作模具钢高温热稳定性机理研究
施渊吉, 吴晓春, 闵娜
上海大学材料科学与工程学院,上海 200072
Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel
SHI Yuanji, WU Xiaochun, MIN Na
School of Materials Science and Engineering, Shanghai University, Shanghai 200072
下载:  全 文 ( PDF ) ( 2287KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用硬度和扫描组织评价方法分析了三种Fe-Cr-Mo-W-V热作模具钢(DM、H21和H13)在580~650 ℃下的热稳定性,研究结果表明DM钢较H21、H13钢具有高的热稳定性。同时,通过测定三种钢的连续加热曲线并结合透射电镜组织,研究了高温热稳保温过程中存在的重要碳化物的类型。为了揭示Fe-Cr-Mo-W-V钢的热稳定机理,计算了三种钢由M2C型碳化物形成阶段向MC型碳化物形成阶段转变的临界点激活能,其值为163.9~204.1 kJ/mol,表明M2C、MC型碳化物的形成不仅受体扩散影响,而且与位错管道扩散激活能相关,DM钢具有最高临界激活能,其值高达204.1 kJ/mol。进一步对比三种钢中的价电子结构差异,得出最高热稳定性的DM钢具有最佳价电子结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
施渊吉
吴晓春
闵娜
关键词:  热稳定性  热作模具钢  连续加热析出曲线  价电子理论    
Abstract: Three kinds of Fe-Cr-Mo-W-V hot working die steels (DM, H21 and H13) were prepared to investigate the thermal stability at 580—650 ℃. Utilizing the hardness measurement and scanning electron microscopy (SEM), an attempt was made to study the thermal stability of three hot working die steels. The results indicated that DM steel had a higher thermal stability than H21 and H13 steels during tempering. Besides, combined with transmission electron microscopy (TEM), the dilatometric data (conti-nuous heating transformation curves) during tempering were analyzed to determine the significance carbides resulting in high thermal stability in Fe-Cr-Mo-W-V steels. To improve the understanding of the thermal stability mechanism, the activation energy of the transformation of MC carbides from M2C carbides in DM, H21 and H13 steels were determined as 163.9—204.1 kJ/mol, which reflect the diffusion of the solute atoms in the transformation reaction of M2C and MC carbides is controlled by volume diffusion and dislocation pipe diffusion, DM steel own the highest activation energy as 204.1 kJ/mol. Furthermore, comparing the differences of the value electron structures in three steels, DM steel with excellent thermal stability shows the best electron structure.
Key words:  thermal stability    hot working die steel    continuous heating transformation curve    electron structure
               出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TG113  
基金资助: 国家重点研发计划(2016YFB0300400)
作者简介:  施渊吉:男,1989年生,博士研究生,主要研究方向为热作模具钢合金设计与组织调控 E-mail:syuanj@163.com
引用本文:    
施渊吉, 吴晓春, 闵娜. Fe-Cr-Mo-W-V系热作模具钢高温热稳定性机理研究[J]. 材料导报, 2018, 32(6): 930-936.
SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel. Materials Reports, 2018, 32(6): 930-936.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.014  或          http://www.mater-rep.com/CN/Y2018/V32/I6/930
1 Cser L, Geiger M, Lange K, et al. Tool life and tool quality in bulk metal forming[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,1993,207(4):223.
2 Kim D H, Lee H C, Kim B M, et al. Estimation of die service life against plastic deformation and wear during hot forging processes[J].Journal of Materials Processing Technology,2005,166(3):372.
3 Shi Y J, Li J W, Wu X C, et al. Experimental and numerical study on the wear failure of hot forging die of automobile flange[J].Tribo-logy,2016,36(2):215(in Chinese).
施渊吉,黎军顽,吴晓春,等.汽车法兰盘热锻模具磨损失效的实验分析和数值研究[J].摩擦学学报,2016,36(2):215.
4 Abel A, Ham R K. The cyclic strain behaviour of crystals of aluminum-4 wt.% copper-ii. Low cycle fatigue[J].Acta Metallurgica,1966,14(11):1495.
5 McGrath J T, Bratina W J. Interaction of dislocations and precipitates in quench-aged iron-carbon alloys subjected to cyclic stressing[J].Acta Metallurgica,1967,15(2):329.
6 Thielen P N, Fine M E, Fournelle R A. Cyclic stress strain relations and strain-controlled fatigue of 4140 steel[J].Acta Metallurgica,1976,24(1):1.
7 Wan C M, Chou K C, Jahn M T, et al. Fatigue studies on dual-phase low carbon steel[J].Journal of Materials Science,1981,16(9):2521.
8 Krauss G. Tempering and structural change in ferrous martensitic structures[J].Phase Transformations in Ferrous Alloys,1983:101.
9 Yan W, Wang W, Shan Y, et al. Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels[J].Frontiers of Materials Science,2013,7(1):1.
10 Medvedeva A, Bergström J, Gunnarsson S, et al. High-temperature properties and microstructural stability of hot-work tool steels[J].Materials Science and Engineering:A,2009,523(1):39.
11 Frisk K. Simulation of precipitation of secondary carbides in hot work tool steels[J].Materials Science and Technology,2012,28(3):288.
12 Davenport A T, Honeycomb R W K. The secondary hardening of tungsten steels[J].Metal Science,1975,9(1):201.
13 Kwon H, Lee K B, Lee J B, et al. Secondary hardening and fracture behavior in alloy steels containing Mo, W, and Cr[J].Metallurgical and Materials Transactions A,1997,28(13):775.
14 Mulholland M D, Seidman D N. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel[J].Acta Materialia,2011,59(5):1881.
15 Wen T, Hu X F, Song Y Y. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J].Acta Metallurgica Sinica,2014,50(4):447(in Chinese).
温涛,胡小锋,宋元元.回火温度对一种FeCrNiMo高强钢碳化物及其力学性能的影响[J].金属学报,2014,50(4):447.
16 Liu Q D, Liu W Q, Wang Z M, et al. 3D atom probe characterization of carbides precipitated in the Nb-V microalloyed steel[J].Acta Metallurgica Sinica,2008,7(3):786(in Chinese).
刘庆冬,刘文庆,王泽民,等.Nb-V微合金钢中碳化物析出的三维原子探针表征[J].金属学报,2008,7(3):786.
17 Onizawa T, Wakai T, Ando M, et al. Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel[J].Nuclear Engineering and Design,2008,238(2):408.
18 Speich G R, Leslie W C. Tempering of steel[J].Metallurgical Tran-sactions,1972,3(5):1043.
19 Samuel F H, Hussein A A. A comparative study of tempering in steel[J].Materials Science and Engineering,1983,58(1):113.
20 Wang L J, Cai Q W, Wu H B, et al. Effect of tempering temperature on the microstructure and mechanical properties of 1500 MPa grade steel directly quenched[J].Chinese Journal of Engineering,2010,32(9):1150(in Chinese).
王立军,蔡庆伍,武会宾,等.回火温度对1 500 MPa级直接淬火钢组织与性能的影响[J].北京科技大学学报,2010,32(9):1150.
21 Pacyna J, J drzejewska-Strach A, Strach M. The effect of manganese and silicon on the kinetics of phase transformations during tempering—Continuous heating transformation (CHT) curves[J]. Journal of Materials Processing Technology, 1997, 64(1-3): 311.
22 Zaj?c G, Pacyna J. The kinetics of phase transformations during tempering in structural steels with nickel[J].Journal of Materials Processing Technology,2005,162:442.
23 Jung M, Lee S J, Lee Y K. Microstructural and dilatational changes during tempering and tempering kinetics in martensitic medium-carbon steel[J].Metallurgical and Materials Transactions A,2009,40(3):551.
24 Nagakura S, Hirotsu Y, Kusunoki M, et al. Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction[J].Metallurgical Transactions A,1983,14(6):1025.
25 Taylor K A, Chang L, Olson G B, et al. Spinodal decomposition during aging of Fe-Ni-C martensites[J].Metallurgical Transactions A,1989,20(12):2717.
26 Baker R G, Nutting J. The tempering of 2.25 Cr%-1% Mo steel after quenching and normalizing[J].J Iron Steel Inst,1959,202:257.
27 Inoue A, Masumoto T. Carbide reactions (M3C→M7C3→M23C6→M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels[J].Metallurgical Transactions A,1980,11(5):739.
28 Zhou Q,Wu X, Shi N, et al. Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering[J].Materials Science & Engineering A,2011,528(18):5696.
29 Bhadeshia H, Honeycombe R. Steels: Microstructure and properties[M].Butterworth-Heinemann,2011:195.
30 Karagöz S, Fischmeister H F, Andrén H O, et al. Microstructural changes during overtempering of high-speed steels[J].Metallurgical Transactions A,1992,23(6):1631.
31 Kurzydłowski K J, Zieliński W. Mo2C→ M6C carbide transformation in low alloy Cr-Mo ferritic steels[J].Metal Science,1984,18(4):223.
32 Hu X B, Li L, Wu X C, et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium[J].International Journal of Fatigue,2006,28(3):175.
33 Dudova N, Kaibyshev R. On the precipitation sequence in a 10% Cr steel under tempering[J].ISIJ international,2011,51(5): 826.
34 Mittemeher E J, Cheng L, Van der Schaaf P J, et al. Analysis of nonisothermal transformation kinetics; tempering of iron-carbon and iron-nitrogen martensites[J].Metallurgical Transactions A,1988,19(4):925.
35 俞德刚. 铁基马氏体时效-回火转变理论及其强韧性[M].上海:上海交通大学出版社,2008:113.
36 Yu R H. Empirical electron theory of solids and molecules[J].Chinese Science Bulletin,1978,23(4):217(in Chinese).
余瑞璜. 固体与分子经验电子理论[J].科学通报,1978,23(4):217.
37 Zhang R L, Yu R H. An analysis of valence electron structure of Fe-C martensite[J].Acta Metallurgica Sinica,1984,20(4):279(in Chinese).
张瑞林,余瑞璜.Fe-C马氏体价电子结构分析[J].金属学报,1984,20(4):279.
38 刘志林. 合金价电子结构与成分设计[M]. 长春: 吉林科学技术出版社, 1989: 111.
[1] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[2] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[3] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[4] 费志方, 李昆锋, 杨自春, 高文杰, 陈国兵. APTES交联型聚酰亚胺气凝胶的制备与表征[J]. 材料导报, 2018, 32(20): 3623-3627.
[5] 胡德超,贾志欣,钟邦超,董焕焕,丁勇,罗远芳,贾德民. 废印刷电路板非金属粉负载二氧化硅杂化填料的制备及其在不饱和聚酯中的应用[J]. 《材料导报》期刊社, 2018, 32(2): 278-281.
[6] 邓莉萍, 鲁世强, 林彦. 合金元素Ni对NbCr2/Nb合金热稳定性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2442-2447.
[7] 刘莹莹, 陈子勇, 金头男, 柴丽华. 600 ℃高温钛合金发展现状与展望[J]. 《材料导报》期刊社, 2018, 32(11): 1863-1869.
[8] 刘建国, 安振涛, 张倩, 杜仕国, 姚凯, 王金. 硝酸羟胺的热稳定性评估及热分解机理研究*[J]. 《材料导报》期刊社, 2017, 31(4): 145-152.
[9] 雷若姗, 陈广润, 徐时清, 王焕平, 汪明朴. 大塑性变形工艺制备纳米晶过饱和固溶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 130-134.
[10] 吴唯, 陈诗英, 宗孟静子. 纳米Al2O3/聚醚砜-环氧树脂复合材料的介电性能及热稳定性能[J]. 《材料导报》期刊社, 2017, 31(20): 21-24.
[11] 曾艳, 吴晓春, 夏书文, 左鹏鹏. 镍元素对新型压铸模具钢热稳定性的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 72-75.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed