Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 930-936    https://doi.org/10.11896/j.issn.1005-023X.2018.06.014
  材料研究 |
Fe-Cr-Mo-W-V系热作模具钢高温热稳定性机理研究
施渊吉, 吴晓春, 闵娜
上海大学材料科学与工程学院,上海 200072
Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel
SHI Yuanji, WU Xiaochun, MIN Na
School of Materials Science and Engineering, Shanghai University, Shanghai 200072
下载:  全 文 ( PDF ) ( 2287KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用硬度和扫描组织评价方法分析了三种Fe-Cr-Mo-W-V热作模具钢(DM、H21和H13)在580~650 ℃下的热稳定性,研究结果表明DM钢较H21、H13钢具有高的热稳定性。同时,通过测定三种钢的连续加热曲线并结合透射电镜组织,研究了高温热稳保温过程中存在的重要碳化物的类型。为了揭示Fe-Cr-Mo-W-V钢的热稳定机理,计算了三种钢由M2C型碳化物形成阶段向MC型碳化物形成阶段转变的临界点激活能,其值为163.9~204.1 kJ/mol,表明M2C、MC型碳化物的形成不仅受体扩散影响,而且与位错管道扩散激活能相关,DM钢具有最高临界激活能,其值高达204.1 kJ/mol。进一步对比三种钢中的价电子结构差异,得出最高热稳定性的DM钢具有最佳价电子结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
施渊吉
吴晓春
闵娜
关键词:  热稳定性  热作模具钢  连续加热析出曲线  价电子理论    
Abstract: Three kinds of Fe-Cr-Mo-W-V hot working die steels (DM, H21 and H13) were prepared to investigate the thermal stability at 580—650 ℃. Utilizing the hardness measurement and scanning electron microscopy (SEM), an attempt was made to study the thermal stability of three hot working die steels. The results indicated that DM steel had a higher thermal stability than H21 and H13 steels during tempering. Besides, combined with transmission electron microscopy (TEM), the dilatometric data (conti-nuous heating transformation curves) during tempering were analyzed to determine the significance carbides resulting in high thermal stability in Fe-Cr-Mo-W-V steels. To improve the understanding of the thermal stability mechanism, the activation energy of the transformation of MC carbides from M2C carbides in DM, H21 and H13 steels were determined as 163.9—204.1 kJ/mol, which reflect the diffusion of the solute atoms in the transformation reaction of M2C and MC carbides is controlled by volume diffusion and dislocation pipe diffusion, DM steel own the highest activation energy as 204.1 kJ/mol. Furthermore, comparing the differences of the value electron structures in three steels, DM steel with excellent thermal stability shows the best electron structure.
Key words:  thermal stability    hot working die steel    continuous heating transformation curve    electron structure
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TG113  
基金资助: 国家重点研发计划(2016YFB0300400)
作者简介:  施渊吉:男,1989年生,博士研究生,主要研究方向为热作模具钢合金设计与组织调控 E-mail:syuanj@163.com
引用本文:    
施渊吉, 吴晓春, 闵娜. Fe-Cr-Mo-W-V系热作模具钢高温热稳定性机理研究[J]. 材料导报, 2018, 32(6): 930-936.
SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel. Materials Reports, 2018, 32(6): 930-936.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.014  或          https://www.mater-rep.com/CN/Y2018/V32/I6/930
1 Cser L, Geiger M, Lange K, et al. Tool life and tool quality in bulk metal forming[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,1993,207(4):223.
2 Kim D H, Lee H C, Kim B M, et al. Estimation of die service life against plastic deformation and wear during hot forging processes[J].Journal of Materials Processing Technology,2005,166(3):372.
3 Shi Y J, Li J W, Wu X C, et al. Experimental and numerical study on the wear failure of hot forging die of automobile flange[J].Tribo-logy,2016,36(2):215(in Chinese).
施渊吉,黎军顽,吴晓春,等.汽车法兰盘热锻模具磨损失效的实验分析和数值研究[J].摩擦学学报,2016,36(2):215.
4 Abel A, Ham R K. The cyclic strain behaviour of crystals of aluminum-4 wt.% copper-ii. Low cycle fatigue[J].Acta Metallurgica,1966,14(11):1495.
5 McGrath J T, Bratina W J. Interaction of dislocations and precipitates in quench-aged iron-carbon alloys subjected to cyclic stressing[J].Acta Metallurgica,1967,15(2):329.
6 Thielen P N, Fine M E, Fournelle R A. Cyclic stress strain relations and strain-controlled fatigue of 4140 steel[J].Acta Metallurgica,1976,24(1):1.
7 Wan C M, Chou K C, Jahn M T, et al. Fatigue studies on dual-phase low carbon steel[J].Journal of Materials Science,1981,16(9):2521.
8 Krauss G. Tempering and structural change in ferrous martensitic structures[J].Phase Transformations in Ferrous Alloys,1983:101.
9 Yan W, Wang W, Shan Y, et al. Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels[J].Frontiers of Materials Science,2013,7(1):1.
10 Medvedeva A, Bergström J, Gunnarsson S, et al. High-temperature properties and microstructural stability of hot-work tool steels[J].Materials Science and Engineering:A,2009,523(1):39.
11 Frisk K. Simulation of precipitation of secondary carbides in hot work tool steels[J].Materials Science and Technology,2012,28(3):288.
12 Davenport A T, Honeycomb R W K. The secondary hardening of tungsten steels[J].Metal Science,1975,9(1):201.
13 Kwon H, Lee K B, Lee J B, et al. Secondary hardening and fracture behavior in alloy steels containing Mo, W, and Cr[J].Metallurgical and Materials Transactions A,1997,28(13):775.
14 Mulholland M D, Seidman D N. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel[J].Acta Materialia,2011,59(5):1881.
15 Wen T, Hu X F, Song Y Y. Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J].Acta Metallurgica Sinica,2014,50(4):447(in Chinese).
温涛,胡小锋,宋元元.回火温度对一种FeCrNiMo高强钢碳化物及其力学性能的影响[J].金属学报,2014,50(4):447.
16 Liu Q D, Liu W Q, Wang Z M, et al. 3D atom probe characterization of carbides precipitated in the Nb-V microalloyed steel[J].Acta Metallurgica Sinica,2008,7(3):786(in Chinese).
刘庆冬,刘文庆,王泽民,等.Nb-V微合金钢中碳化物析出的三维原子探针表征[J].金属学报,2008,7(3):786.
17 Onizawa T, Wakai T, Ando M, et al. Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel[J].Nuclear Engineering and Design,2008,238(2):408.
18 Speich G R, Leslie W C. Tempering of steel[J].Metallurgical Tran-sactions,1972,3(5):1043.
19 Samuel F H, Hussein A A. A comparative study of tempering in steel[J].Materials Science and Engineering,1983,58(1):113.
20 Wang L J, Cai Q W, Wu H B, et al. Effect of tempering temperature on the microstructure and mechanical properties of 1500 MPa grade steel directly quenched[J].Chinese Journal of Engineering,2010,32(9):1150(in Chinese).
王立军,蔡庆伍,武会宾,等.回火温度对1 500 MPa级直接淬火钢组织与性能的影响[J].北京科技大学学报,2010,32(9):1150.
21 Pacyna J, J drzejewska-Strach A, Strach M. The effect of manganese and silicon on the kinetics of phase transformations during tempering—Continuous heating transformation (CHT) curves[J]. Journal of Materials Processing Technology, 1997, 64(1-3): 311.
22 Zaj?c G, Pacyna J. The kinetics of phase transformations during tempering in structural steels with nickel[J].Journal of Materials Processing Technology,2005,162:442.
23 Jung M, Lee S J, Lee Y K. Microstructural and dilatational changes during tempering and tempering kinetics in martensitic medium-carbon steel[J].Metallurgical and Materials Transactions A,2009,40(3):551.
24 Nagakura S, Hirotsu Y, Kusunoki M, et al. Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction[J].Metallurgical Transactions A,1983,14(6):1025.
25 Taylor K A, Chang L, Olson G B, et al. Spinodal decomposition during aging of Fe-Ni-C martensites[J].Metallurgical Transactions A,1989,20(12):2717.
26 Baker R G, Nutting J. The tempering of 2.25 Cr%-1% Mo steel after quenching and normalizing[J].J Iron Steel Inst,1959,202:257.
27 Inoue A, Masumoto T. Carbide reactions (M3C→M7C3→M23C6→M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels[J].Metallurgical Transactions A,1980,11(5):739.
28 Zhou Q,Wu X, Shi N, et al. Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering[J].Materials Science & Engineering A,2011,528(18):5696.
29 Bhadeshia H, Honeycombe R. Steels: Microstructure and properties[M].Butterworth-Heinemann,2011:195.
30 Karagöz S, Fischmeister H F, Andrén H O, et al. Microstructural changes during overtempering of high-speed steels[J].Metallurgical Transactions A,1992,23(6):1631.
31 Kurzydłowski K J, Zieliński W. Mo2C→ M6C carbide transformation in low alloy Cr-Mo ferritic steels[J].Metal Science,1984,18(4):223.
32 Hu X B, Li L, Wu X C, et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium[J].International Journal of Fatigue,2006,28(3):175.
33 Dudova N, Kaibyshev R. On the precipitation sequence in a 10% Cr steel under tempering[J].ISIJ international,2011,51(5): 826.
34 Mittemeher E J, Cheng L, Van der Schaaf P J, et al. Analysis of nonisothermal transformation kinetics; tempering of iron-carbon and iron-nitrogen martensites[J].Metallurgical Transactions A,1988,19(4):925.
35 俞德刚. 铁基马氏体时效-回火转变理论及其强韧性[M].上海:上海交通大学出版社,2008:113.
36 Yu R H. Empirical electron theory of solids and molecules[J].Chinese Science Bulletin,1978,23(4):217(in Chinese).
余瑞璜. 固体与分子经验电子理论[J].科学通报,1978,23(4):217.
37 Zhang R L, Yu R H. An analysis of valence electron structure of Fe-C martensite[J].Acta Metallurgica Sinica,1984,20(4):279(in Chinese).
张瑞林,余瑞璜.Fe-C马氏体价电子结构分析[J].金属学报,1984,20(4):279.
38 刘志林. 合金价电子结构与成分设计[M]. 长春: 吉林科学技术出版社, 1989: 111.
[1] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[2] 张思钊, 刘淳, 姜勇刚, 冯坚. 聚酰亚胺气凝胶的耐高温性能研究进展[J]. 材料导报, 2024, 38(13): 23040260-11.
[3] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[4] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[5] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[6] 谢奕心, 程晓农, 鞠玉琳, 魏琪. H13及H13改进型热作模具钢热处理过程中碳化物析出演化行为研究进展[J]. 材料导报, 2023, 37(23): 22040214-8.
[7] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[8] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[9] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[10] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[11] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[12] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[13] 李萍, 张源, 吴义强, 袁光明, 李贤军, 左迎峰. 基于原位浸渍法的酚醛树脂改性杉木木材研究[J]. 材料导报, 2021, 35(22): 22193-22199.
[14] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[15] 王亚楠, 曹凤香, 王永锋, 曹静, 李兆, 吴坤尧. 玻璃纤维增强硼酸酯改性酚醛树脂复合材料的摩擦学性能研究[J]. 材料导报, 2021, 35(18): 18210-18215.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed