Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 924-929    https://doi.org/10.11896/j.issn.1005-023X.2018.06.013
  材料研究 |
添加碳化钨和石墨改善真空熔覆Ni-Co基合金涂层的极化行为
杨贵荣1, 宋文明1, 2, 王建儒1, 张玉福1, 2, 王富强1, 马颖1
1 兰州理工大学,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;
2 甘肃蓝科高新石化装备股份有限公司,兰州 730070
The Addition of WC and Graphite Improves Polarization Behavior of Ni-Co-based Alloy Coatings Fabricated by Vacuum Fusion Sintering
YANG Guirong1, SONG Wenming1, 2, WANG Jianru1, ZHANG Yufu1, 2, WANG Fuqiang1, MA Ying1
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050;
2 Lanpec Technologies Limited, Lanzhou 730070
下载:  全 文 ( PDF ) ( 2015KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用真空熔覆技术在45#钢表面制备了不同Co含量的Ni-Co基合金熔覆层及Ni-Co+WC、Ni-Co+WC+Graphite复合熔覆层,研究了涂层在3.5% NaCl溶液中的电化学行为。结果表明,在ZG45表面制备的Ni-Co基合金熔覆层的自腐蚀电位随Co含量的增加而升高,其自腐蚀电位相比ZG45至少提高了4.98%,腐蚀电流则降低了74.93%。在Ni-Co基合金熔覆层中添加WC和石墨(G)后其自腐蚀电位提高:同时添加WC和G时的自腐蚀电位相比只添加WC时提高了32.39%,腐蚀电流则降低了19.37%;且同时添加WC和G试样的自腐蚀电位比Ni-40%Co提高33.86%,耐腐蚀性能相比Ni-Co基合金得到了增强和改善。另外,在同时添加WC和G的试样的极化曲线上出现了钝化区,且其钝化区腐蚀电位宽度大于只添加WC的试样,说明前者的耐腐蚀性优于后者。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨贵荣
宋文明
王建儒
张玉福
王富强
马颖
关键词:  碳化钨  石墨  镍钴基复合涂层  真空熔覆  极化曲线    
Abstract: The Ni-Co alloy fusion coating, Ni-Co+WC and Ni-Co+WC+Graphite composite fusion coating were fabricated through the vacuum fusion sintering technique on 45# steel substrate, and the resultant coatings’ electrochemical behavior in 3.5% NaCl solution was studied. Our experiment confirmed the higher (at least 4.98% higher) self-corrosion potentials and lower (74.93% lower) corrosion current densities of Ni-Co alloy fusion coatings compared with ZG45 substrate, as well as the monotonic increase of self-corrosion potential with the increasing Co content for the Ni-Co alloy fusion coatings. The addition of WC and graphite (G) causes the rise of self-corrosion potential for Ni-Co alloy fusion coatings. Ni-Co+WC+Graphite composite fusion coating holds the self-corrosion potential superiority of 32.39% and 33.86% to Ni-Co+WC coating and Ni-40%Co coating, respectively, also a corrosion current density 19.37% lower than Ni-Co+WC coating, thereby demonstrating the significantly improved corrosion resistance. Moreover, on the polarization curve of Ni-Co+WC+Graphite sample, the passivation region can be observed, the width of which is larger than that of the Ni-Co+WC composite fusion coating. This indicates that the corrosion resistance of Ni-Co+WC+Graphite coa-ting is more satisfactory.
Key words:  tungsten carbide    graphite    Ni-Co-based alloy composite coating    vacuum fusion sintering    polarization curve
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(51765035; 51205178); 甘肃省高等学校科研项目(2017A-015)
作者简介:  杨贵荣:女,1976年生,博士,教授,主要从事金属表面功能材料的制备与性能、摩擦磨损、腐蚀与防护及失效分析研究 E-mail:yanggrming@lut.cn
引用本文:    
杨贵荣, 宋文明, 王建儒, 张玉福, 王富强, 马颖. 添加碳化钨和石墨改善真空熔覆Ni-Co基合金涂层的极化行为[J]. 材料导报, 2018, 32(6): 924-929.
YANG Guirong, SONG Wenming, WANG Jianru, ZHANG Yufu, WANG Fuqiang, MA Ying. The Addition of WC and Graphite Improves Polarization Behavior of Ni-Co-based Alloy Coatings Fabricated by Vacuum Fusion Sintering. Materials Reports, 2018, 32(6): 924-929.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.013  或          https://www.mater-rep.com/CN/Y2018/V32/I6/924
1 Chen Hua, Gong Wenbiao, Liu Rui, et al. Study on wear resistance and corrosion resistance of laser cladding nick based alloy[J].Heat Treatment of Metals,2001(3):25(in Chinese).
陈华,宫文彪,刘睿,等.激光熔覆镍基合金的耐磨耐蚀性研究[J].金属热处理,2001(3):25.
2 Zhou Xinxing, Lin Chen, Liu Fangqiang. Effect of heating time on corrosion resistance of Ni-base alloy coating prepared by high-frequency induction cladding[J].Heat Treatment of Metals,2014,39(4):101(in Chinese).
周新星,林晨,刘方强.加热时间对高频感应熔覆镍基合金涂层耐腐蚀性能的影响[J].金属热处理,2014,39(4):101.
3 Zhang Anfeng, Zhang Junhu, Peng Feng.Corrosion characteristic and electrochemical behavior of Ni-based coatings in acid corrosion media[J].Ordnance Material Science and Engineering,2005,28(3):20(in Chinese).
张安峰,张军虎,彭锋.镍基涂层在腐蚀介质中的腐蚀特性与电化学行为[J].兵器材料科学与工程,2005,28(3):20.
4 Yang Ruicheng, Nie Furong, Zheng Liping, et al. Properties, progression and application of Ni-base corrosion resistance alloys[J].Journal of Gansu University of Technology,2002,28(4):28(in Chinese).
杨瑞成,聂福荣,郑丽萍,等.镍基耐蚀合金特性、进展及其应用[J].甘肃工业大学学报,2002,28(4):28.
5 Yang Ruicheng, Wang Hui, Zheng Liping, et al. Characteristics and research trends of high performance Ni-base corrosion resistance alloys[J].Journal of Gansu University of Technology,2001,15(11):21(in Chinese).
杨瑞成,王晖,郑丽萍,等.高性能镍基耐蚀合金的特性与研究动向[J].甘肃工业大学学报,2001,15(11):21.
6 Sun Huan, Lin Chen, Tao Hongwei, et al.Corrosion resistance of vacuum high-frequency induction cladding Ni60-WC composite coa-ting[J].China Surface Engineering,2013,26(6):35(in Chinese).
孙焕,林晨,陶洪伟,等.真空高频感应熔覆Ni60A-WC复合涂层的耐蚀性[J].中国表面工程,2013,26(6):35.
7 Zhu Bailin, Hu Mulin, Chen Li, et al.Research status of cracking in laser cladding layer[J].Heat Treatment of Metals,2000,7(3):6(in Chinese).
祝柏林,胡木林,陈俐,等.激光熔覆层开裂问题的研究现状[J].金属热处理,2000,7(3):6.
8 Su Xianyong, Zhou Xianglin, Cui Hua,et al. Research progress in cold gas dynamic spray technology[J].Surface Technology, 2007,36(5):17(in Chinese).
苏贤涌,周香林,崔华,等.冷喷涂技术的研究进展[J].表面技术,2007,36(5):17.
9 陈文威.金属表面涂层技术及应用[M].北京:人民交通出版社,1996:5.
10 Qiao Jinshi.The study on the microstructure and properties of plasma cladded Ni-base alloy coatings[D].Hefei:Hefei University of Technology,2014(in Chinese).
乔金士. 等离子熔覆镍基合金涂层组织结构与性能的研究[D].合肥:合肥工业大学,2014.
11 宣天鹏. 材料表面功能镀覆层及其应用[M]. 北京:机械工业出版社,2008:1.
12 Zhao Hu.Research on the fabrication and tribological behavior of Ni-based fusing cladding layer on ZG45 casting steel substrate[D].Lanzhou:Lanzhou University of Technology,2013(in Chinese).
赵虎. ZG45表面镍基熔覆层的制备与摩擦性能研究[D].兰州:兰州理工大学,2013.
13 Wang Xusheng. Research on the formation mechanisms and properties of Ni-Co/WC+G composite coatings deposited by vacuum cladding on casting steel substrate[D].Lanzhou:Lanzhou University of Technology,2016(in Chinese).
王旭升. 铸钢表面Ni-Co/WC+G复合熔覆层的形成机制及性能研究[D].兰州:兰州理工大学,2016.
14 ASM. Metals Handbook[M].Boston:PWS Publishiing Company, 1973.
15 Fan Zishuan, Sun Dongbai, Yu Hongying, et al. Structure and pro-perties of molybdenum base amorphous-nanocrystal alloy coating prepared by plasma spraying[J].Transactions of Materials and Heat Treatment,2005,26(2):90(in Chinese).
樊自拴,孙冬柏,俞宏英,等.离子喷涂钼基非晶-纳米晶复合涂层的组织与性能[J].材料热处理学报,2005,26(2):90.
16 Zhou rong, Zhang Xiangbao, Si Yunsen. Corrosion resistance of laser clad Ni-base alloys[J].The Chinese Journal of Nonferrous Me-tals,1999,9(2):70(in Chinese).
周融,张祥宝,司云森.激光熔敷镍基合金的耐蚀性[J].中国有色金属学报,1999,9(2):70.
17 Wu Xiangqing, Hu Huilin, Xie Faqin, et al. Microstructure and corrosion properties of plasma arc spraying Ni-based coatings[J].China Surface Engineering,2011,24(5):13(in Chinese).
吴向清,胡慧玲,谢发勤,等.等离子喷涂镍基合金涂层的组织与耐蚀性[J].中国表面工程,2011,24(5):13.
18 Mei X X, Sun W F, Hao S Z,et al. Surface modification of high-speed steel by intense pulsed ion beam irradiation[J].Surface and Coating Technology,2007,26(9-11):5072.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[5] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[6] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[7] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[8] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[9] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[10] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[11] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[12] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[13] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[14] 王彦, 杨凯, 吕绪明, 党博, 魏东博, 张平则. 石墨表面双辉等离子Ta/TaC涂层抗热震性能研究[J]. 材料导报, 2024, 38(23): 23080013-9.
[15] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed