Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22070184-6    https://doi.org/10.11896/cldb.22070184
  无机非金属及其复合材料 |
石墨烯水泥砂浆抗碳化试验及预测模型分析
董健苗1, 何其1, 周铭2,3,*, 王振宇1, 庄佳桥1, 邹明璇1, 李万金1
1 广西科技大学土木建筑工程学院,广西 柳州 545006
2 广西科技大学机械与交通工程学院,广西 柳州 545006
3 广西清鹿新材料科技有限责任公司,广西 柳州 545006
Carbonization Resistance Test and Prediction Model Analysis of Graphene Cement Mortar
DONG Jianmiao1, HE Qi1, ZHOU Ming2,3,*, WANG Zhenyu1, ZHUANG Jiaqiao1, ZOU Mingxuan1, LI Wanjin1
1 School of Civil Engineering and Architecture, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
2 School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
3 Guangxi Qinglu New Material Technology Co., Ltd., Liuzhou 545006, Guangxi, China
下载:  全 文 ( PDF ) ( 19378KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将两种不同尺寸的石墨烯(Peeling graphene,PG)料浆进行分散,制备出石墨烯水泥砂浆,通过快速碳化法对不同龄期的石墨烯水泥砂浆进行碳化试验,并通过X射线衍射(XRD)、扫描电镜(SEM)以及X射线能谱(EDS)等测试手段观察石墨烯水泥基材料的组成以及水化产物的微观形貌。试验结果表明,碳化龄期为56 d时,大尺寸石墨烯(PG1)和小尺寸石墨烯(PG2)水泥砂浆试件的碳化深度分别为3.7 mm、5.5 mm,相比空白组分别降低了58.4%、38.2%。使用R语言中的lm函数,建立了不同碳化时间时三种水泥砂浆试件的碳化深度非线性回归预测模型,研究碳化时间与碳化深度的关系,结果表明,模拟结果与试验实测值吻合度高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董健苗
何其
周铭
王振宇
庄佳桥
邹明璇
李万金
关键词:  石墨烯  水泥砂浆  抗碳化性能  微观分析  非线性预测模型    
Abstract: Two different sizes of graphene (Peeling graphene, PG) slurry were dispersed, and then the graphene cement mortars were prepared. Carbonization test of graphene cement mortar at different ages was conducted by rapid carbonization methods. Composition and hydration pro-ducts of graphene cement-based materials were observed by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS) tests. The microscopic morphology of graphene cement-based materials and hydration products were observed. The test results showed that at the age of 56 d, the carbonation depths of the large-size graphene (PG1) and small-size graphene (PG2) cement mortar samples were 3.7 mm and 5.5 mm, respectively, which were 58.4% and 38.2% lower than those of the blank sample. Using the lm function of R language, the nonlinear regression prediction models on the carbide depth of the three cement mortar test blocks at different ages were established, the relationship between carbonation time and carbonation depth was investigated. The simulation results have a high agreement with the experimental measured values.
Key words:  graphene    cement mortar    carbonation resistance    micro analysis    nonlinear prediction model
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51568009;12062002);广西科技攻关项目(桂科攻1114016-6);广西科学研究与技术开发计划项目(AC19245071);广西研究生教育创新计划项目(GKYC202009)
通讯作者:  *周铭,研究员、硕士研究生导师,清华大学摩擦学国家重点实验室博士,广西科技大学机械与汽车工程学院教授,广西清鹿新材料科技有限责任公司首席科学家。目前从事新材料的机械表/界面行为调控与应用研究工作。在Friction、Carbon、ACS Appl.Mater.& Interfaces、Adv.Mat.Interfaces等期刊发表20余篇SCI收录论文,SCI他引超过400次。 3323296017@qq.com   
作者简介:  董健苗,广西科技大学土木建筑工程学院教授、硕士研究生导师。1994年武汉工业大学无机非金属材料专业本科毕业,2001年武汉理工大学材料学专业硕士毕业后到广西科技大学工作至今。2016年1月至2016年9月在英国UCL大学访学。目前主要从事高性能水泥混凝土等方面的研究工作。发表论文40余篇,包括Cement and Concrete Research、Journal of Wuhan University of Technology-Materials Science Edition、《硅酸盐学报》《建筑材料学报》《材料导报》等。
引用本文:    
董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
DONG Jianmiao, HE Qi, ZHOU Ming, WANG Zhenyu, ZHUANG Jiaqiao, ZOU Mingxuan, LI Wanjin. Carbonization Resistance Test and Prediction Model Analysis of Graphene Cement Mortar. Materials Reports, 2024, 38(5): 22070184-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070184  或          https://www.mater-rep.com/CN/Y2024/V38/I5/22070184
1 Dong J M, Nie H, Yan Y J, et al. New Building Materials, 2016, 43(8), 89(in Chinese).
董健苗, 聂浩, 燕元晶, 等. 新型建筑材料, 2016, 43(8), 89.
2 Raheem A, Mahdy M, Mashaly A A. Construction and Building Materials, 2019, 213, 561.
3 Dong J M, Zou M X, Zhou M, et al. Materials Reports, 2022, 36(24), 76(in Chinese).
董健苗, 邹明璇, 周铭, 等. 材料导报, 2022, 36(24), 76.
4 Cui H Z, Jin Z Y, Zheng D P, et al. Construction and Building Materials, 2018, 181, 713.
5 Dong J M, Liu C, Long S Z. Journal of Building Materials, 2012, 15(4), 490 (in Chinese).
董健苗, 刘晨, 龙世宗. 建筑材料学报, 2012, 15(4), 490.
6 Jin Y, Yang Q, Zhao W B, et al. CIESC Journal, 2020,71(6),116(in Chinese).
金燕, 杨倩, 赵文斌, 等. 化工学报, 2020, 71(6), 116.
7 Yuan Xiaoya. Journal of Inorganic Materials, 2011, 26(6), 561(in Chinese).
袁小亚. 无机材料学报, 2011, 26(6), 561.
8 Lotya M, Hernandez Y, King P J, et al. Journal of the American Chemical Society, 2009, 131(10), 3611.
9 Zhan Dafu. Preparation and research on mechanical sensitivity of graphene cement-based composite. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2021(in Chinese).
詹达富. 石墨烯水泥基复合材料的制备及机敏性能研究. 硕士学位论文, 北京建筑大学, 2021.
10 Liang Jiafeng, Guo Jianqiang, Li Yue, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(3), 704(in Chinese).
梁佳丰, 郭建强, 李岳, 等. 硅酸盐通报, 2021, 40(3), 704.
11 Chen Yu, Jiang Xiaofei, Liu Ronggui, et al. Concrete, 2021(2), 106(in Chinese).
陈妤, 蒋晓菲, 刘荣桂, 等. 混凝土, 2021(2), 106.
12 Chen Baorui, Wu Qisheng, Zhu Huajun, et al. Journal of Materials Science and Engineering, 2018, 36(4), 650(in Chinese).
陈宝锐, 吴其胜, 诸华军, 等. 材料科学与工程学报, 2018, 36(4), 650.
13 Sun Yanfa, Ruan Dong, Wang Xiaojuan, et al. Non-Metallic Mines, 2021, 44(4), 38(in Chinese).
孙延法, 阮冬, 汪晓娟, 等. 非金属矿, 2021, 44(4), 38.
14 Du H, Dai P S. Cement and Concrete Research, 2015, 76, 10.
15 Zhao Ruying. Dispersion of graphene nanosheets and the durability of graphene nanosheets reinforced cement-based composites. Master's Thesis, Dalian University of Technology, China, 2018 (in Chinese).
赵汝英. 石墨烯的分散性及其水泥基复合材料的耐久性. 硕士学位论文, 大连理工大学, 2018.
16 Tong T, Fan Z, Liu Q, et al. Construction and Building Materials, 2016, 106, 102.
17 Mohammed A, Sanjayan J G, Nazari A, et al. Construction and Building Materials, 2018, 168, 858.
18 Dong J M, Yu L, Wang H M, et al. Journal of Guangxi University of Science and Technology, 2021, 32(3), 26 (in Chinese).
董健苗, 余浪, 王慧敏, 等. 广西科技大学学报, 2021, 32(3), 26.
19 Gu Yue. Modified cement-based materials with core-shell nano-SiO2. Ph.D. Thesis, Southeast University, China, 2017 (in Chinese).
顾越. 核壳纳米SiO2改性水泥基材料性能研究. 博士学位论文, 东南大学, 2017.
20 Cheng Z H, Yang S, Yuan X Y. Acta Materiae Compositae Sinica, 2021, 38(2), 339(in Chinese).
程志海, 杨森, 袁小亚. 复合材料学报, 2021, 38(2), 339.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[5] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[6] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[7] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[8] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[9] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[10] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[11] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[12] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[13] 褚洪岩, 史文芳, 王群, 蒋金洋. 采用城市生活垃圾焚烧飞灰制备绿色水泥砂浆的可行性研究[J]. 材料导报, 2024, 38(19): 23070076-7.
[14] 胡家宇, 徐菲, 钱文勋, 肖怀前, 葛津宇, 李嘉明. 涂覆时间对聚合物水泥基钢筋涂层粘接性能的影响机理[J]. 材料导报, 2024, 38(17): 22060053-4.
[15] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed