Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22070190-7    https://doi.org/10.11896/cldb.22070190
  无机非金属及其复合材料 |
除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系
朱本清1, 余红发2,*, 巩旭3, 吴成友1,3,*, 麻海燕2
1 青海大学土木工程学院,西宁 810000
2 南京航空航天大学机场与土木工程系,南京 211106
3 青海省建筑节能材料与工程安全重点实验室,西宁 810000
Relationship Between Bond Strength of Concrete Interface and Meso-mechanical Properties of Interface Transition Zone Under Freezing-thawing Action of Deicing Salt
ZHU Benqing1, YU Hongfa2,*, GONG Xu3, WU Chengyou1,3,*, MA Haiyan2
1 School of Civil Engineering, Qinghai University, Xining 810000, China
2 Department of Airport and Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
3 Qinghai Provincial Key Laboratory of Building Energy-saving Materials and Engineering Safety, Xining 810000, China
下载:  全 文 ( PDF ) ( 10206KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 界面过渡区 (Interfacial transition zone,ITZ)是混凝土内部结构的薄弱环节,也是外界侵蚀性离子向内扩散渗透的通道。通过除冰盐快速冻融实验研究了在除冰盐冻融环境下混凝土界面宏观和细观力学性能的变化规律。结果表明,混凝土粗骨料与砂浆的界面粘结强度和ITZ显微硬度在盐冻过程中均呈现出典型的两段式线性变化,即随着盐冻循环次数增加而增强的初始强化阶段和随着盐冻循环次数增加而降低的后期劣化阶段;初始界面粘结强度或ITZ显微硬度随着水胶比的增大而减小,初始强化速率减慢,后期劣化速率加快,且低水胶比的混凝土有着较好的抗盐冻性能;盐冻过程中混凝土粗骨料和砂浆的界面粘结强度与ITZ显微硬度之间具有较明显的相关性。此研究结果为盐冻环境下混凝土细观力学分析提供了基础数据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱本清
余红发
巩旭
吴成友
麻海燕
关键词:  混凝土  除冰盐  单面冻融  界面过渡区  力学性能  显微硬度    
Abstract: Interfacial transition zone (ITZ) is the concrete internal structure of the weak link, it is also a channel for external erosive ions to diffuse and penetrate inward. In this work, the macroscopic and meso-mechanical properties of concrete interface under freezing-thawing environment of deicing salt were studied by rapid freezing-thawing experiment. The results show that the interface bond strength and ITZ microhardness of concrete aggregate and mortar show a typical two-stage linear change during the salt freezing process. The initial strengthening stage increased with the increase of salt freezing cycles and the later deterioration stage decreased with the increase of salt freezing cycles. The initial interface bond strength or ITZ microhardness will decrease with the increase of water-binder ratio, the initial strengthening rate will slow down, and the later deterioration rate will accelerate. The concrete with lower water-binder ratio has better salt freeze resistance. There is an obvious correlation between the bonding strength and ITZ microhardness of coarse aggregate in concrete during salt-freezing process. It provides basic data for meso-mechanical analysis of concrete in salt-frozen environment.
Key words:  concrete    deicing salt    single side freeze-thaw    interface transition zone    mechanical property    microhardness
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(21276264);青海省自然科学基金(2022-ZJ-707)
通讯作者:  *余红发,工学博士,教授、博士研究生导师,主要研究方向为水泥混凝土材料与结构耐久性。主持国家自然科学基金项目5项、军方项目2项、省部级项目10余项,发表SCI论文70余篇、EI论文120 余篇、国内重要核心期刊论文30余篇;发明专利授权30余项;出版专著2部,主编行业标准2项。 yuhongfa@nuaa.edu.cn
吴成友,博士,教授、博士研究生导师。从事新型镁基胶凝材料方面的研究,主持国家级科研项目和省部级科研项目10余项,参与国家级和省部级项目等10余项。发表学术论文100余篇,授权国家发明专利20余项。 wuchengyou86@163.com   
作者简介:  朱本清,2020年6月毕业于江西科技师范大学,取得工学学士学位,现为青海大学土木工程学院硕士研究生,在余红发教授的指导下进行研究,目前主要研究领域为结构工程与建筑材料。
引用本文:    
朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
ZHU Benqing, YU Hongfa, GONG Xu, WU Chengyou, MA Haiyan. Relationship Between Bond Strength of Concrete Interface and Meso-mechanical Properties of Interface Transition Zone Under Freezing-thawing Action of Deicing Salt. Materials Reports, 2024, 38(5): 22070190-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070190  或          https://www.mater-rep.com/CN/Y2024/V38/I5/22070190
1 Farran J. Revmater Construct Travel Publics, 1956, 490, 191.
2 Barnes B D, Diamond S, Dolch W L. Cement and Concrete Research, 1978, 8(2), 233.
3 Lin J J, Chen H S, Zhang R L, et al. Materials Characterization, 2019, 154, 335.
4 Luo Z Y, Li W G, Wang K J, et al. Cement and Concrete Research, 2021, 143, 106392.
5 Branch J L, Epps R, Kosson D S. Cement and Concrete Research, 2018, 103, 170.
6 Xiong Y, Yin J. Applied Mechanics and Materials, 2016, 847, 544.
7 Wu K, Long J F, Xu L L, et al. Construction and Building Materials, 2019, 223(30), 1063.
8 Wang M, Xie Y J, Long G C, et al. Construction and Building Materials, 2019, 221(10), 151.
9 Jebli M, Jamin F, Malachanne E, et al. Construction and Building Materials, 2018, 161, 16.
10 Yang X, Shen A, Guo Y, et al. Construction and Building Materials, 2018, 160, 588.
11 Lei B, Li W, Tang Z, et al. Construction and Building Materials, 2018, 163, 840.
12 Shu C. Study on nano-scratch characterization of concrete interfacial transition zone and freeze-thaw durability. Master's Thesis, Shanghai Jiao Tong University, China, 2015(in Chinese).
舒畅. 混凝土界面过渡区和冻融耐久性纳米划痕表征研究. 硕士学位论文, 上海交通大学, 2015.
13 Gao X. ANSYS simulation of concrete compression and freezing-thawing cycle. Master's Thesis, Beijing Jiao Tong University, China, 2010(in Chinese).
郜旭. 混凝土受压和冻融循环过程的 ANSYS 模拟. 硕士学位论文, 北京交通大学, 2010.
14 Sicat E, Gong F, Ueda T, et al. Construction and Building Materials, 2014, 65, 122.
15 Qudoos A, Kim H G, Atta-ur-Rehman, et al. Powder Technology, 2019, 352, 453.
16 Du S, Ge Y, Shi X M. Cement and Concrete Composites, 2019, 104, 103390.
17 Zhu X Y, Gao Y, Dai Z W, et al. Cement and Concrete Research, 2018, 107, 49.
18 Zhang Z Q, Zhang B, Yan P Y. Construction and Building Materials, 2016, 121(15), 483.
19 Yan X C, Jiang L H, Guo M Z, et al. Construction and Building Materials, 2019, 195(20), 231.
20 Lu B, Shi C J, Hou G H. Construction and Building Materials, 2018, 188, 417.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[3] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[4] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[5] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[6] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[7] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[8] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[9] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[10] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[11] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[12] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[13] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[14] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[15] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed