Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22070218-6    https://doi.org/10.11896/cldb.22070218
  无机非金属及其复合材料 |
再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响
陈立俊1, 李滢1,*, 陈文浩2
1 青海大学土木工程学院,西宁 810016
2 青海省建筑节能材料与工程安全重点实验室,西宁 810016
Effect of Recycled Powder and Mineral Admixture on the Mechanical Properties and Microstructure of Concrete
CHEN Lijun1, LI Ying1,*, CHEN Wenhao2
1 School of Civil Engineering, Qinghai University, Xining 810016, China
2 Qinghai Provincial Key Laboratory of Energy Saving Building Materials and Engineering Safety, Xining 810016, China
下载:  全 文 ( PDF ) ( 9994KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高再生微粉在混凝土中的利用率,将单掺再生微粉的混凝土与复掺再生微粉、粉煤灰和硅灰的混凝土的力学性能及微观结构进行了对比研究。结果表明,单掺再生微粉和三者复掺对混凝土的抗压强度和孔结构有不同程度的影响,当掺量低于20%时,单掺再生微粉的混凝土抗压强度高于同掺量时的复掺混凝土,孔隙率相比于复掺时也有所降低;而掺量高于20%时,复掺效果优于单掺,特别是当复掺掺量为30%时,混凝土28 d抗压强度相比单掺掺量为30%时提高了33.4%,总孔隙率和大孔占总孔隙的比例分别降低了4.4%和17.77%。这说明再生微粉的掺入量较大会给混凝土带来不利影响,但添加粉煤灰与硅灰后,它们可以发挥协同作用,从而改善混凝土的复合水泥基体强度和孔结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈立俊
李滢
陈文浩
关键词:  再生微粉  混凝土  微观结构  力学性能  孔结构  协同作用    
Abstract: In order to improve the utilization rate of recycled powder in concrete, the mechanical properties and microstructure of single-doped recycled powder concrete and compound recycled powder, fly ash and silica ash concrete were compared. The results show that the single-doped recycled fine powder and the three-way re-mixing have different degrees of influence on the compressive strength and pore structure of the concrete, and when the dosage is less than 20%, the compressive strength of the single-doped recycled fine powder is higher than that of the re-mixed concrete when it was combined, and the porosity was also reduced relative to the re-doping time. When the dosage is higher than 20%, the compounding effect is better than that of single doping, especially when the compounding is 30%, the compressive strength of the concrete in 28 d is increased by 33.4% compared with the single doping by 30%, and the total porosity and the proportion of large pores to total pores are reduced by 4.4% and 17.77%, respectively. This shows that when the amount of recycled powder is incorporated, it will adversely affect the concrete, but after adding fly ash and silica ash, it can play a synergistic effect to improve the composite cement matrix strength and pore structure of the concrete.
Key words:  recycled powder    concrete    microstructure    mechanical property    pore structure    synergistic effect
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51668052);青海省科技厅基础研究计划项目(2023-ZJ-725)
通讯作者:  *李滢,青海大学土木工程学院教授,1997年7月重庆建筑大学建筑材料及制品专业毕业后到青海大学工作至今,2003年6月在清华大学获得材料学专业硕士学位。目前主要从事高性能混凝土、再生混凝土及固体废物再生利用等方面的研究,在国内外重要期刊发表文章30多篇。 liying.qh@163.com   
作者简介:  陈立俊,2020年7月于青海民族大学获得工学学士学位。现为青海大学土木工程学院硕士研究生,在李滢教授的指导下进行研究,主要从事再生微粉混凝土耐久性及寿命预测研究。
引用本文:    
陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
CHEN Lijun, LI Ying, CHEN Wenhao. Effect of Recycled Powder and Mineral Admixture on the Mechanical Properties and Microstructure of Concrete. Materials Reports, 2024, 38(5): 22070218-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070218  或          https://www.mater-rep.com/CN/Y2024/V38/I5/22070218
1 Xiao J, Ma Z, Sui T, et al. Journal of Cleaner Production, 2018, 188, 720.
2 Zhang D L, Lyu J, Chen H, et al. Building Construction, 2005(6), 68(in Chinese).
张大利, 吕晶, 陈辉, 等. 建筑施工, 2005(6), 68.
3 Lu D Y, Zhang S H, Xu J T, et al. Journal of the Chinese Ceramic Society, 2017, 45(5), 662(in Chinese).
卢都友, 张少华, 徐江涛, 等. 硅酸盐学报, 2017, 45(5), 662.4 Liu C, Hu T F, Liu H W, et al. Journal of Building Materials, 2021, 24(4), 726(in Chinese).
刘超, 胡天峰, 刘化威, 等. 建筑材料学报, 2021, 24(4), 726.
5 He Z H, Zhang M Y, Zhan P M, et al. Concrete and Cement Products, 2021(5), 85(in Chinese).
何智海, 张梦圆, 詹培敏, 等. 混凝土与水泥制品, 2021(5), 85.
6 Lyu X R. Study on flexural behavior of high ductility recycled micro-powder concrete (HDRPC) beams. Master's Thesis, Shandong Jianzhu University, China, 2021(in Chinese).
吕相蓉. 高延性再生微粉混凝土(HDRPC)梁抗弯性能研究. 硕士学位论文, 山东建筑大学, 2021.
7 Peng C Y, Zhang X P, Yu B, et al. Concrete, 2020(1), 22(in Chinese).
彭春元, 张小鹏, 余斌, 等. 混凝土, 2020(1), 22.
8 Bai H L, Fan Y H, Li Y, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2628(in Chinese).
白花蕾, 樊耀虎, 李滢, 等. 硅酸盐通报, 2020, 39(8), 2628.
9 Li X L, Wu R, Guo Q. Journal of Shandong Jianzhu University, 2021, 36(5), 11(in Chinese).
李秀领, 吴睿, 郭强. 山东建筑大学学报, 2021, 36(5), 11.
10 Wu B Y, Xie X F, Huang Y L, et al. Bulletin of the Chinese Ceramic Society, 2014, 33(6), 1490(in Chinese).
吴本英, 谢秀芳, 黄映丽, 等. 硅酸盐通报, 2014, 33(6), 1490.
11 Ngala V T, Page C L, Parrott L J, et al. Cement & Concrete Research, 1995, 25(4), 819.
12 Xie Y J, Ma K L, Long G C, et al. Journal of the Chinese Ceramic Society, 2006, 34(11), 1345(in Chinese).
谢友均, 马昆林, 龙广成, 等. 硅酸盐学报, 2006, 34(11), 1345.
13 Wu X H, Yue P J. Journal of Building Materials, 2011, 14(3), 381(in Chinese).
吴相豪, 岳鹏君. 建筑材料学报, 2011, 14(3), 381.
14 Liu W. Study on chloride ion penetration resistance of concrete. Master's Thesis, Central South University, China, 2003(in Chinese).
刘伟. 混凝土抗氯离子渗透性能研究. 硕士学位论文, 中南大学, 2003.
15 Li Y, Kang X M, Chen X, et al. China Powder Technology, 2022, 28(3), 107(in Chinese).
李滢, 康晓明, 陈曦, 等. 中国粉体技术, 2022, 28(3), 107.
16 Liu S H, Leng F G, Li L H. Concrete auxiliary cementing material, China Building Materials Press, China, 2010, pp.106(in Chinese).
刘数华, 冷发光, 李丽华. 混凝土辅助胶凝材料, 中国建材出版社, 2010, pp.106.
17 Dang J T, Zhao J. Construction and Building Materials, 2019, 228, 116757.
18 Lin L, Wu H, Xie J L, et al. Waste Management & Research, 2010, 28(7), 653.
19 Shao J, Gao J M, Zhao Y S, et al. Construction and Building Materials, 2019, 49(2), 375.
20 Florea M V A, Ning Z, Brouwers H J H. Construction and Building Materials, 2014, 50, 1.
21 Li Y. Concrete, 2013(5), 65(in Chinese).
李滢. 混凝土, 2013(5), 65.
22 Xie Y J, Liu B J, Liu W. Journal of Railway Science and Engineering, 2004, 1(2), 46(in Chinese).
谢友均, 刘宝举, 刘伟. 铁道科学与工程学报, 2004, 1(2), 46.
23 Zhu B R, Yang Q B. Journal of the Chinese Ceramic Society, 2004(7), 892(in Chinese).
朱蓓蓉, 杨全兵. 硅酸盐学报, 2004(7), 892.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[3] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[6] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[7] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[8] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[9] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[10] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[11] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[12] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[13] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[14] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[15] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed