Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19111-19116    https://doi.org/10.11896/cldb.19050058
  金属与金属基复合材料 |
复合变形制备超细晶工业纯钛的研究进展
刘晓燕, 张琪, 高飞龙, 杨西荣, 罗雷, 柳奎君
西安建筑科技大学冶金工程学院,西安 710055
Research Progress on Preparation of Ultrafine Grained Commercially Pure
Titanium by Complex Deformation
LIU Xiaoyan, ZHANG Qi, GAO Feilong, YANG Xirong, LUO Lei, LIU Kuijun
School of Metallurgical Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 7063KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着经济的发展和人口老龄化的加剧,医用金属材料在创伤外科、整形手术和口腔医疗中的需求量越来越大。其中钛及钛合金具有优异的耐腐蚀性能和良好的生物相容性,因此被广泛应用。钛合金中含有对人体有害的合金元素,会使人体出现病症,因此不含合金元素的工业纯钛在生物医学材料领域越来越受到重视。
近几十年来,国内外学者应用等径通道挤压(ECAP)技术成功制备出超细晶工业纯钛。但是ECAP技术制备超细晶材料存在细化和强化极限,而且ECAP道次数较多,工序复杂,生产效率低,对工件的尺寸和形状要求很高,因此限制了超细晶工业纯钛的应用。为了使工业纯钛的强度满足使用要求,并且开发出易于实际运用的加工技术,将ECAP与传统塑性加工相结合(复合变形技术)的研究和应用越来越多。
工业纯钛先经多道次ECAP变形细化晶粒,再经传统塑性加工提高位错密度,其强度可增加到1 000 MPa左右,并且保持良好的塑性。后变形使ECAP变形后的等轴晶粒被拉长,且分布不均匀,材料的力学性能表现出强烈的各向异性。复合变形可以运用较少道次的ECAP,缩短了加工周期。此外,通过后变形可以将材料加工成所需的成品形状,更易于生产和应用。复合变形后的超细晶工业纯钛进行低温退火可以提高材料的塑性,得到更优的综合力学性能。
本文综述了复合变形制备超细晶工业纯钛的研究进展,分别对不同复合变形后工业纯钛的显微组织、力学性能、热稳定性和织构演变进行了介绍。对复合变形制备超细晶工业纯钛过程中存在的问题和今后的研究方向进行了总结和展望,以期为开发高效率易加工的复合变形技术提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓燕
张琪
高飞龙
杨西荣
罗雷
柳奎君
关键词:  工业纯钛  复合变形  显微组织  力学性能  织构演变  热稳定性    
Abstract: With the development of economy and the aging of population, the demand for metal materials in trauma surgery, plastic surgery and dental medicine is increasing. Titanium and its alloys have been widely used in biomedical engineering due to their excellent corrosion resistance and good biocompatibility. The slow dissolution and accumulation of alloying elements of titanium alloys in human body can cause illness, so commercially pure titanium without alloying elements has attracted much attention in the field of biomedical materials.
In recent decades, ultrafine grained(UFG) commercially pure titanium has been successfully prepared by equal channel angular pressing (ECAP). However, there are grain refinement and strengthening limits in the UFG materials prepared by ECAP. It is limited the application of UFG commercially pure titanium due to the low production efficiency of multi-passes ECAP, and the high requirement on the size and shape of the workpiece. In order to meet the high strength requirements of commercially pure titanium and develop processing technology which is easy to be applied in practice, ECAP combined with traditional plastic processing (complex deformation technology) has been extensively studied and applied.
The strength of commercially pure titanium increases to about 1 000 MPa and the plasticity remains good after complex deformation (multi-passes of ECAP and followed by conventional plastic processing), which is due to grain refinement and the increase in the dislocation density. After post-deformation, the equiaxed grains after ECAP are elongated and unevenly distributed, which leads to the strong anisotropy of mechanical properties. The complex deformation can use less passes of ECAP, shorten the processing cycle, and transform the material into the desired finished shape, making it easier to use in production and application. The ductility of UFG commercially pure titanium after complex deformation can be improved by low-temperature annealing.
In this paper, the research progresson the preparation of UFG commercially pure titanium by complex deformation is reviewed. It focuses on the microstructure, mechanical properties, thermal stability and texture evolution of commercially pure titanium after different complex deformation. The research status and existing problems in preparation of ultrafine grained commercially pure titanium by complex deformation technology and the further research direction are pointed out. It can provide reference for the development of high-efficiency and easy-to-process complex defor-mation technology.
Key words:  commercially pure titanium    complex deformation    microstructure    mechanical properties    texture evolution    thermal stability
                    发布日期:  2020-11-05
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51474170);陕西省医用金属材料重点实验室开放基金(SXBMM-201903)
通讯作者:  xauat-lxyan@hotmail.com   
作者简介:  刘晓燕,西安建筑科技大学冶金工程学院副教授、硕士研究生导师。2002年7月本科毕业于西安建筑科技大学冶金工程学院,2014年7月在西安建筑科技大学冶金工程学院材料加工工程专业取得博士学位,2011—2012年在美国俄亥俄州立大学进行为期一年的访问学习。主要从事超细晶材料的制备及组织性能的研究工作。近年来,在剧烈塑性变形制备超细晶材料领域发表论文30余篇。
引用本文:    
刘晓燕, 张琪, 高飞龙, 杨西荣, 罗雷, 柳奎君. 复合变形制备超细晶工业纯钛的研究进展[J]. 材料导报, 2020, 34(19): 19111-19116.
LIU Xiaoyan, ZHANG Qi, GAO Feilong, YANG Xirong, LUO Lei, LIU Kuijun. Research Progress on Preparation of Ultrafine Grained Commercially Pure
Titanium by Complex Deformation. Materials Reports, 2020, 34(19): 19111-19116.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050058  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19111
1 Valiev Ruslan. Nature Materials,2004,3(8),511.
2 Matykina E, Arrabal R, Valiev R Z, et al. Electrochimica Acta,2015,176,1221.
3 Rack H J, Petruzelka J, Dluhos L, et al. Advanced Engineering Mate-rials,2008,10(8),B15.
4 Valiev R Z, Sabirov I, Zhilyaev A P, et al. JOM,2012,64(10),1134.
5 Zhao X C, Yang X R, Liu X Y, et al. Materials Science & Engineering,2010,527(23),6335.
6 Zhang Y, Figueiredo R B, Alhajeri S N, et al. Materials Science & Engineering A,2011,528(25-26),7708.
7 Chen Y J, Li Y J, Walmsley J C, et al. Scripta Materialia,2011,64(9),904.
8 Stolyarov V V, Zhu Y T, Lowe T C, et al. Nanostructured Materials,1999,11(7),947.
9 Yang X R, Zhao X C, Fu W J. Materials Reports A:Review Papers,2010,24(3),96(in Chinese).
杨西荣,赵西成,付文杰.材料导报:综述篇,2010,24(3),96.
10 Gunderov D V, Polyakov A V, Semenova I P, et al. Materials Science and Engineering: A,2013,562,128.
11 Dalla T F, Lapovok R, Sandlin J, et al. Acta Materialia,2004,52(16),4819.
12 Stolyarov V V, Zeipper L, Mingler B, et al. Materials Science and Engineering: A,2008,476(1-2),98.
13 Semenova I P, Salimgareeva G K, Latysh V V, et al. Metal Science and Heat Treatment,2009,51(1),87.
14 Polyakov A V, Gunderov D, Raab G I. Trans Tech Publications,2011,667,1165.
15 Gu Y X, Aibin M, Jinghua J, et al. Rare Metal Materials and Enginee-ring,2017,46(12),3639.
16 Stolyarov V V, Zhu Y T, Alexandrov I V, et al. Materials Science & Engineering: A,2003,343(1-2),43.
17 Fan Z, Jiang H, Sun X, et al. Materials Science & Engineering A,2009,527(1-2),45.
18 Mingler B, Stolyarov V V, Zehetbauer M J, et al. Materials Science Forum,2006,503,805.
19 Rao M S, Chakkingal U, Raghu T. Transactions of the Indian Institute of Metals,2013,66(4),357.
20 Stolyarov V V, Zhu Y T, Lowe T C, et al. Journal of Nanoscience and Nanotechnology,2001,1(2),237.
21 Rostami P, Faraji G, Sadeghi A, et al. Transactions of the Indian Institute of Metals,2018,71(5),1083.
22 Sordi V L, Ferrante M, Kawasaki M, et al. Journal of Materials Science,2012,47(22),7870.
23 Raab G I, Valiev R, Gunderov D, et al. Materials Science Forum,2008,584,80.
24 Stolyarov V V, Zhu Y T, Lowe T C, et al. Materials Science & Enginee-ring: A,2001,303(1-2),82.
25 Kang D H, Kim T W. Materials & Design,2010,31,54.
26 Krystian M, Huber D, Horky J. In: The 20th International ESAFORM Conference on Material Forming. Malaysia,2017,pp.200003.
27 Song X J. Microstructure and property of commercially pure titanium processed by ECAP and rotary swaging at room temperature. Master's Thesis, Xi'an University of Architecture & Technology, China,2016(in Chinese).
宋小杰.室温ECAP+旋锻复合加工纯钛材的组织性能研究.硕士学位论文,西安建筑科技大学,2016.
28 Gubicza J, Fogarassy Z, Krallics G, et al. Materials Science Forum,2008,589,99.
29 Sabirov I, Perez-Prado M T, Molina-Aldareguia J M, et al. Scripta Materialia,2011,64(1),69.
30 Valiev R Z, Semenova I P, Jakushina E, et al. Materials Science Forum,2008,584-586,49.
31 Roodposhti P S, Farahbakhsh N, Sarkar A, et al. Transactions of Nonferrous Metals Society of China,2015,25(5),1353.
32 Ko Y G, Shin D H, Park K T, et al. Scripta Materialia,2006,54(10),1785.
33 Fu W J, Zhao X C, Yang X R, et al. Chinese Journal of Materials Research,2008(3),303(in Chinese).
付文杰,赵西成,杨西荣,等.材料研究学报,2008(3),303.
34 Wang P. Metal plastic forming mechanics, Metallurgical Industry Press, China,2013(in Chinese).
王平.金属塑性成型力学,冶金工业出版社,2013.
35 Hoseini M, Pourian M H, Bridier F, et al. Materials Science & Enginee-ring: A,2012,532,58.
36 Zhanal P, Vaclavova K, Hadzima B, et al. Materials Science and Engineering: A,2016,651,886.
37 Beyerlein I J, Laszlo S Toth. Progress in Materials Science,2009,54(4),427.
38 Kim W J, Hong S I, Kim Y S, et al. Acta Materialia,2003,51(11),3293.
39 Beyerlein I J, Lebensohn R A, Tome C N. Materials Science & Enginee-ring: A,2003,345(1-2),122.
30 Suwas S, Beausir B, Toth L S, et al. Acta Materialia,2011,59(3),1121.
41 Beausir B, Suwas S, Toth L S, et al. Acta Materialia,2008,56(2),200.
[1] 左文韬, 樊正方, 刘国强, 刘江, 廖成. 电荷传输层和热退火对钙钛矿薄膜电学性能的影响[J]. 材料导报, 2020, 34(Z1): 13-18.
[2] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[3] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[4] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[5] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[6] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[7] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[8] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[9] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[10] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[11] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[12] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[13] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[14] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[15] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed