Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3298-3305    https://doi.org/10.11896/cldb.18090201
  金属与金属基复合材料 |
LPSO相增强镁稀土合金耐热性能研究进展
王策1, 马爱斌1,2, 刘欢1,2, 黄河1, 孙甲鹏1, 杨振权1, 江静华1,2
1 河海大学力学与材料学院,南京 211100;
2 宿迁市河海大学研究院,宿迁 223800
Research Progress on Heat Resistance of Magnesium-Rare Earth Alloys Reinforcedby Long Period Stacking Ordered Phase
WANG Ce1, MA Aibin1,2, LIU Huan1,2, HUANG He1, SUN Jiapeng1, YANG Zhenquan1, JIANG Jinghua1,2
1 College of Mechanics and Materials, Hohai University, Nanjing 211100;
2 Suqian Research Institute of Hohai University, Suqian 223800
下载:  全 文 ( PDF ) ( 2559KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金作为最轻的金属结构材料,具有密度低、储量丰富、比强度和比刚度高、阻尼减震和电磁屏蔽性能佳、导热导电性良好、易于回收利用等一系列优点,故而在航空航天、国防军事、新能源汽车等领域展现出极大的应用潜力和发展前景。然而,镁合金的绝对强度偏低,尤其是高温强度低、抗蠕变性能较差,极大地限制了其作为结构材料在关键零部件上的使用。因此,开发在高温下仍具有良好使役性能的新型高强韧镁合金是当前学者面临的严峻问题。
当在镁合金中同时加入Gd或Y等稀土元素以及Zn元素时,合金中会形成一种新颖的相结构——长周期堆垛有序(Long period stacking ordered structure,LPSO)结构。由于LPSO相的存在,镁合金的力学性能显著提升(室温抗拉强度已突破500 MPa),高温性能也得到有效改善(高温拉伸强度和高温抗蠕变性能均显著优于同样状态下的WE54等商用镁合金)。因此,近年来,国内外研究人员针对LPSO相增强镁稀土合金的耐热性能开展了广泛研究,并取得了较为显著的研究成果。研究主要集中于两个方面:一是LPSO结构的热稳定性研究,即高温下不同LPSO结构之间的相互转变规律和演化机制;二是合金的高温力学性能研究,通过揭示LPSO相对合金高温拉伸、压缩和抗蠕变性能的影响规律和作用机制,开发新一代高强韧耐热镁合金。
借助于先进的高分辨电镜表征技术,研究人员对Mg-RE-Zn合金中18R和14H等 LPSO相的结构和形成机理进行了全面解析。根据合金成分及状态的不同,高温下14H相主要通过两种方式形成,即在镁基体中直接析出或由18R结构转变而来。通过高温拉伸/压缩性能测试及组织观察,阐明了LPSO结构与位错、孪晶和晶界的交互作用,揭示其高温下强韧化镁合金的微观机理。近年来的蠕变研究工作进一步证实了LPSO相具有提高合金抗蠕变性能的巨大潜力,LPSO相的自身形态与强化效果,及其与多种沉淀相在蠕变过程中的交互作用显著影响合金的抗蠕变性能。然而,目前为止,有关该类合金的蠕变控制机制及LPSO相所起的作用尚未明确。
本文探讨了LPSO相在高温下的转变规律及其对合金晶粒尺寸的影响,并系统综述了LPSO相的结构、形态和分布情况对镁稀土合金高温拉伸、高温压缩以及抗蠕变性能的影响规律和作用机制,最后展望了LPSO相增强镁稀土合金在耐热领域应用所面临的问题和未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王策
马爱斌
刘欢
黄河
孙甲鹏
杨振权
江静华
关键词:  长周期堆垛有序结构  热稳定性  高温强度  抗蠕变性能    
Abstract: As the lightest structural metallic materials, magnesium alloys have exhibited great application potential and bright development prospect in aerospace, military, and new energy automobile industries due to the low density, rich resources, high specific strength and stiffness, high damping capacity, good thermal conductivity and electrical conductivity, easy recovery, and so on. However, the low absolute strength of magnesium alloys, especially low strength at high temperatures and poor heat resistance, greatly restrict their further applications as some key components. Therefore, the development of novel high-strength, high-toughness, and heat-resistant magnesium alloys has become one of the serious issues at present.
When Gd or Y rare earth elements and Zn element are simultaneously added into magnesium alloys, a novel long period stacking ordered (LPSO) phase could be formed. Owing to the existence of LPSO phase, the mechanical properties of magnesium alloys are remarkably promoted with ultimate tensile strength exceeding 500 MPa, and the heat resistances are also improved, with higher tensile strength at elevated temperatures and better creep resistance than conventional WE54 commercial magnesium alloys. Recently, researchers have conducted extensive researches on the heat resistance of LPSO strengthened Mg-RE alloys, and have gained some important results. These researches mainly focus on two aspects. One is to study the thermostability of LPSO structures, i.e. the transformation and evolution mechanisms of various LPSO structures at high temperatures. The other one is to investigate the high temperature mechanical properties (tensile, compression and creep resistance) of Mg-RE-Zn alloys and develop the new generation high strength and heat-resistant magnesium alloys.
With the aid of advanced high-resolution electron microscopes, the atomic structures and formation mechanism of 18R and 14H LPSO phases have been systematically investigated. According to the alloy compositions and processed states, 14H LPSO phase could be formed at high temperatures in two ways, precipitated from α-Mg matrix directly or transformed from 18R phase. By high-temperature tensile/compression tests and microstructure characterizations, the interactions between LPSO phases, dislocations, twins and grain boundaries are expounded, as well as the strengthening mechanism of LPSO phase. The creep researches in recent years further confirm the great potential of LPSO phases on enhancing the creep resistance of Mg-RE-Zn alloys. The morphologies and strengthening effects of various LPSO phases, and their interactions with variety of precipitates, impact the creep resistance of magnesium alloys significantly. Nevertheless, the creep controlling mechanisms of these alloys and the role of LPSO phase during creep remain unclear by now.
In this article, the transformation mechanism of LPSO phase and microstructure evolutions of magnesium alloys at high temperature are reviewed. The influence of structure, morphology and distribution of LPSO phases on high temperature mechanical properties of magnesium alloys is discussed. Finally, the problems and development prospects of LPSO-strengthening heat resistant magnesium alloys are prospected.
Key words:  long period stacking ordered structure    thermal stability    high temperature strength    creep resistance
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TG146.2+2  
基金资助: 国家自然科学基金(51774109);江苏省自然科学基金(BK20160869)
作者简介:  王策,2017年毕业于河海大学,获得工学学士学位。现为河海大学力学与材料学院硕士研究生,在马爱斌教授和刘欢讲师的指导下进行研究。目前主要研究领域为耐热镁合金。马爱斌,河海大学力学与材料学院,教授、博士研究生导师。1985年获得南京工学院(现东南大学)学士学位,1997获得日本爱知工业大学工学博士学位。国家“火炬计划”专家、国家留学基金评审专家、国家科学技术奖励评审专家、江苏省战略性新兴产业专家、江苏省科技成果转化专项评审专家等多省科技项目和科技奖励评审专家。长期从事材料制备、材料组织细化、微观组织与性能关系等方面的研究工作。在 Acta MaterialiaScripta Materialia等国内外核心期刊公开发表学术论文200余篇,其中SCI收录百余篇。aibin-ma@hhu.edu.com
引用本文:    
王策, 马爱斌, 刘欢, 黄河, 孙甲鹏, 杨振权, 江静华. LPSO相增强镁稀土合金耐热性能研究进展[J]. 材料导报, 2019, 33(19): 3298-3305.
WANG Ce, MA Aibin, LIU Huan, HUANG He, SUN Jiapeng, YANG Zhenquan, JIANG Jinghua. Research Progress on Heat Resistance of Magnesium-Rare Earth Alloys Reinforcedby Long Period Stacking Ordered Phase. Materials Reports, 2019, 33(19): 3298-3305.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090201  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3298
1 Kawamura Y, Hayashi K, Inoue A, et al. Materials Transactions,2001,42(7),1172.2 Kawamura Y, Yamasaki M. Materials Transactions,2007,48(11),2986.3 Pu Z J, Cheng D J, Zhang K, et al. Materials Review A: Review Papers,2017,31(4),79(in Chinese).蒲治军,陈东杰,张奎,等.材料导报:综述篇,2017,31(4),79.4 Ding W J, Wu Y J, Peng L M, et al. Journal of Materials Research,2009,24(5),1842.5 Zhang S, Liu W C, Gu Y Y, et al. Journal of Alloys and Compounds,2013,557,91.6 Onorbe E, Garces G, Perze P, et al. Scripta Materialia,2011,65(8),719.7 Abe E, Kawamura Y, Hayashi K, et al. Acta Materialia,2002,50(15),3845.8 Huang F, Wu Y J, Peng L M, et al. Materials Review A: Review Papers,2011,25(2),8(in Chinese).黄飞,吴玉娟,彭立明,等.材料导报:综述篇,2011,25(2),8.9 Li M, Zhang K, Li X G, et al. Materials Science and Engineering A,2015,626,415.10 Yu Z J, Huang Y D, Gan W M, et al. Materials Science and Engineering A,2016,657,259.11 Li J C, He Z L, Fu P H, et al. Materials Science and Engineering A,2016,651,745.12 Xu C, Fan G H, Nakata T, et al. Metallurgical and Materials Transactions A,2018,49(5),1931.13 Xu C, Zheng M Y, Wu K, et al. Materials Science and Engineering A,2013,559,232.14 Gao Y. Microstructure, properties and creep behavior of Mg-Gd-Y-Zn-Zr alloys. Ph.D. Thesis, Shanghai Jiao Tong University, China,2009(in Chinese).高岩.Mg-Y-Gd-Zn-Zr镁合金组织、性能及其蠕变行为研究.博士学位论文,上海交通大学,2009.15 Amiya1 K, Ohsuna T, Inoue A. Materials Transactions,2003,44(10),2151.16 Itoi T, Seimiya T, Kawamura Y, et al. Scripta Materialia,2004,51(2),107.17 Yokobayashi H, Kishida K, Inui H, et al. Acta Materialia,2011,59(19),7287.18 Lee J, Sato K, Konno T J, et al. Materials Transactions,2009,50(1), 222.19 Zhang L, Zhang J H, Leng Z, et al. Materials and Design,2014,54,256.20 Mi S B, Jin Q Q. Scripta Materialia,2013,68(8),635.21 Jin Q Q, Shao X H, Hu X B, et al. Philosophical Magnesium,2017,97(1),1.22 Zhu Y M, Morton A, Nie J F. Acta Materialia,2010,58(8),2936.23 Lu F M. Microstructure controls and performance improvements of Mg-RE-X alloys containing long-period stacking ordered (LPSO) precipitates. Ph.D. Thesis, Hohai University, China,2017(in Chinese).卢富敏.含长周期堆垛有序结构相Mg-RE-X合金的组织控制及高性能化研究.博士学位论文,河海大学,2017.24 Wu Y J, Zeng X Q, Lin D L, et al. Journal of Alloys and Compounds,2009,477(1-2),193.25 Zhu Y M, Weyland M, Morton A J, et al. Scripta Materialia,2009,60(11),980.26 Zhu Y M, Morton A J, Nie J F. Acta Materialia,2012,60(19),6562.27 Liu H, Yan K, Yan J L, et al. Transactions of Nonferrous Metals Society of China,2017,27(1),63.28 Liu H, Bai J, Yan K, et al. Materials and Design,2016,93(5),9.29 Hagihara K, Kinoshita A, Sugino Y, et al. Intermetallics,2010,18(5),1079.30 Honma T, Ohkubo T, Kamado S, et al. Acta Materialia,2007,55(12),4137.31 Yamasaki M, Sasaki M, Nishijima M, et al. Acta Materialia,2007,55(20),6798.32 Nie J F. Metallurgical and Materials Transactions A,2012,43A,3891.33 Fu J Q. Electron microscopy study of long period stacking structure in Mg97Zn1Y2 alloy. Master’s Thesis, Beijing University of Technology, China,2007(in Chinese).付建强.Mg97Zn1Y2中长周期堆垛结构的电子显微学研究.硕士学位论文,北京工业大学,2007.34 Shao X H, Yang Z Q, You J H, et al. Journal of Alloys and Compounds,2011,509(26),7221.35 Hagihara K, Kinoshita A, Sugino Y, et al. Acta Materialia,2010,58(19),6282.36 Yamasaki M, Hashimoto K, Hagihara K, et al. Acta Materialia,2011,59(9),3646.37 Hagihara K, Kinoshita A, Fukusumi Y, et al. Materials Science and Engineering A,2013,560(10),71.38 Li Y X, Qiu D, Rong Y H, et al. Philosophical Magazine,2014,94(12),1311.39 Lu J W, Yin D D, Ren L B, et al. Journal of Materials Science,2016,51(23),10464.40 Zhang J H, Leng Z, Liu S J, et al. Journal of Alloys and Compounds,2011,509(29),7717.41 Zhang J S, Chen C J, Cheng W L, et al. Materials Science and Enginee-ring A,2013,559,416.42 Bi G L, Fang D Q, Zhao L, et al. Materials Science and Engineering A,2011,528(10-11),3609.43 Kawamura Y, Kasahara T, Izumi S, et al. Scripta Materialia,2006,55(5),453.44 Leng Z, Zhang J H, Zhu T L, et al. Materials and Design,2013,52,713.45 Itoi T, Takahashi K, Moriyama H, et al. Scripta Materialia,2008,59(10),1155.46 Anyanwu I A, Kamado S, Kojima Y. Materials Transactions,2001,42(7),1206.47 Yu Z J, Huang Y D, Qiu X, et al. Materials Science and Engineering A,2013,578(20),346.48 Inoue A, Kawamura Y, Matsushita M, et al. Journal of Materials Research,2001,16(7),1894.49 Li C Q, Xu D K, Zeng Z R, et al. Materials and Design,2017,121,430.50 Shao X H, Yang Z Q, Ma X L. Acta Materialia,2010,58(14),4760.51 Liu H, Ju J, Yang X W, et al. Journal of Alloys and Compounds,2017,704,509.52 Yu Z J, Huang Y D, Dieringa H, et al. Materials Science and Enginee-ring A,2015,645,213.53 Nie J F, Gao X, Zhu S M. Scripta Materialia,2005,53(9),1049.54 Sun J J. Investigation on the creep behavior of Mg-Y system alloys at elevated temperatures. Master’s Thesis, Southeast University, China,2014(in Chinese).孙晶晶.镁钇系合金高温蠕变行为研究.硕士学位论文,东南大学,2014.55 Matsuda M, Li S, Kawamura Y, et al. Materials Science and Engineering A,2004,386(1-2),447.56 Yin D D, Wang Q D, Boehlert C J, et al. Materials Science and Engineering A,2012,546,239.57 Xu C, Nakata T, Oh-ishi K, et al. Scripta Materialia,2017,139,34.58 Li Y X, Zhu G Z, Qiu D, et al. Journal of Alloys and Compounds,2016,660,252.59 Li Y X, Yang C L, Zeng X Q, et al. Materials Characterization,2018,141,286.60 Kim W J, Chung S W, Chung C S, et al. Acta Materialia,2001,49(16),3337.61 Srinivasan A, Dieringa H, Mendis C L, et al. Materials Science and Engineering A,2016,649,158.62 Zhu X R, Wang J, Xu Y D, et al. Journal of Rare Earths,2013,31(2),186.63 Yin D D, Wang Q D, Boehlert C J, et al. Metallurgical and Materials Transactions A,2012,43A,3338.
[1] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[2] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[3] 李华鑫, 陈俊勇, 乐弦, 向军辉. Al2O3-SiO2复合气凝胶的制备与表征[J]. 材料导报, 2019, 33(18): 3170-3174.
[4] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[5] 施渊吉, 吴晓春, 闵娜. Fe-Cr-Mo-W-V系热作模具钢高温热稳定性机理研究[J]. 材料导报, 2018, 32(6): 930-936.
[6] 费志方, 李昆锋, 杨自春, 高文杰, 陈国兵. APTES交联型聚酰亚胺气凝胶的制备与表征[J]. 材料导报, 2018, 32(20): 3623-3627.
[7] 胡德超,贾志欣,钟邦超,董焕焕,丁勇,罗远芳,贾德民. 废印刷电路板非金属粉负载二氧化硅杂化填料的制备及其在不饱和聚酯中的应用[J]. 《材料导报》期刊社, 2018, 32(2): 278-281.
[8] 邓莉萍, 鲁世强, 林彦. 合金元素Ni对NbCr2/Nb合金热稳定性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2442-2447.
[9] 刘莹莹, 陈子勇, 金头男, 柴丽华. 600 ℃高温钛合金发展现状与展望[J]. 《材料导报》期刊社, 2018, 32(11): 1863-1869.
[10] 刘建国, 安振涛, 张倩, 杜仕国, 姚凯, 王金. 硝酸羟胺的热稳定性评估及热分解机理研究*[J]. 《材料导报》期刊社, 2017, 31(4): 145-152.
[11] 雷若姗, 陈广润, 徐时清, 王焕平, 汪明朴. 大塑性变形工艺制备纳米晶过饱和固溶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 130-134.
[12] 吴唯, 陈诗英, 宗孟静子. 纳米Al2O3/聚醚砜-环氧树脂复合材料的介电性能及热稳定性能[J]. 《材料导报》期刊社, 2017, 31(20): 21-24.
[13] 曾艳, 吴晓春, 夏书文, 左鹏鹏. 镍元素对新型压铸模具钢热稳定性的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 72-75.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed