Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3623-3627    https://doi.org/10.11896/j.issn.1005-023X.2018.20.023
  高分子与聚合物基复合材料 |
APTES交联型聚酰亚胺气凝胶的制备与表征
费志方1,2, 李昆锋1,2, 杨自春1,2, 高文杰1,2, 陈国兵1,2
1 海军工程大学舰船高温结构复合材料研究室,武汉 430033;
2 海军工程大学动力工程学院,武汉 430033;
Synthesis and Characterization of the APTES Cross-linked Polyimide Aerogels
FEI Zhifang1,2, LI Kunfeng1,2, YANG Zichun1,2, GAO Wenjie1,2, CHEN Guobing1,2
1 Institute of High Temperature Structural Composite Materials of Naval Ship, Naval University of Engineering, Wuhan 430033;
2 School of Power Engineering, Naval University of Engineering, Wuhan 430033;
下载:  全 文 ( PDF ) ( 2344KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以低成本的3-氨丙基三己氧基硅烷(APTES)为交联剂,4,4′-二氨基二苯醚(ODA)为二胺单体,3,3′,4,4′-联苯四甲酸二酐(BPDA)或均苯四甲酸二酐(PMDA)为二酐单体,采用溶胶-凝胶和化学亚胺化方法,结合CO2超临界干燥技术,制备出两种不同二酐单体的交联型聚酰亚胺气凝胶。采用FTIR、SEM、N2吸脱附、万能材料试验机、热重分析等手段来表征样品的化学组成、微观形貌、孔结构、压缩性能及热稳定性,研究了二酐单体种类对聚酰亚胺气凝胶的压缩性能及热稳定性的影响。结果表明:采用BPDA和PMDA制备的交联型聚酰亚胺气凝胶都具有纳米尺度的纤维状网络结构,具有密度低(0.102 g/cm3和0.121 g/cm3)和比表面积大(295 m2/g和311 m2/g)的特性。以PMDA为单体的交联型聚酰亚胺气凝胶10%应变对应的压缩强度和压缩模量分别为0.37 MPa和5.3 MPa,高于以BPDA为单体的交联型聚酰亚胺气凝胶(0.17 MPa和3.0 MPa)。此外,前者制得的聚酰亚胺的初始热分解温度为543 ℃,高于后者制得的聚酰亚胺的初始热分解温度(502 ℃)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
费志方
李昆锋
杨自春
高文杰
陈国兵
关键词:  聚酰亚胺气凝胶  硅烷偶联剂  交联  力学性能  热稳定性    
Abstract: Taking the low-cost 3-aminopropyltriethoxysilane (APTES) as crosslinking agent,4,4′-oxydianiline (ODA) as diamine monomer,3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) or pyromellitic dianhydride (PMDA) as dianhydride monomer, cross-linked polyimide aerogels with different dianhydride monomers were successfully synthesized by sol-gel and chemical imidization methods combined with CO2 supercritical drying technique. Then, the chemical composition, micro topography, pore structure, compressibility and thermal stability of the samples were characterized by FTIR, SEM, N2 adsorption and desorption, universal material testing machine and thermogravimetric analysis. Furthermore, the effects of dianhydride monomers on the compressibility and thermal stability of polyimide aerogels were investigated. The results showed that the polyimide aerogels with two kinds of mo-nomers both presented nanoscale fibrous network structure with low density (0.102 g/cm3 and 0.121 g/cm3) and large specific surface area (295 m2/g and 311 m2/g). The cross-linked polyimide aerogels with PMDA as monomer possessed the compressive strength and compressive modulus of 0.37 MPa and 5.3 MPa, which were higher than that of the cross-linked polyimide aerogels with BPDA as monomer (0.17 MPa and 3.0 MPa). Besides, the initial thermal decomposition temperature of the former polyimide was 543 ℃, which was higher than the initial thermal decomposition temperature of the latter polyimide (502 ℃).
Key words:  polyimide aerogel    silane coupling agent    cross-linked    mechanical properties    thermal stability
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51702364);国家部委基金项目(417212409)
作者简介:  费志方:男,1989年生,博士研究生,研究方向为气凝胶材料制备 E-mail:fzf_js@126.com 杨自春:通信作者,男,1967年生,博士,教授,博士研究生导师,主要从事高温热防护材料、舰船动力系统等研究 E-mail:yangzichun11@sina.com
引用本文:    
费志方, 李昆锋, 杨自春, 高文杰, 陈国兵. APTES交联型聚酰亚胺气凝胶的制备与表征[J]. 材料导报, 2018, 32(20): 3623-3627.
FEI Zhifang, LI Kunfeng, YANG Zichun, GAO Wenjie, CHEN Guobing. Synthesis and Characterization of the APTES Cross-linked Polyimide Aerogels. Materials Reports, 2018, 32(20): 3623-3627.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.023  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3623
1 Dorcheh A S, Abbasi M H. Silica aerogel: Synthesis, properties and characterization [J]. Journal of Materials Processing Technology,2008,199(1):10.
2 Du A, Zhou B, Zhang Z, et al. A special material or a new state of matter: A review and reconsideration of the aerogel [J]. Materials,2013,6(3):941.
3 Feng J, Gao Q F, Zhang C R, et al. Effect of SiO2 sol proportion on the mechanical properties of aerogel insulation composites [J]. Acta Materiae Compositae Sinica,2010,27(6):179(in Chinese).
冯坚,高庆福,张长瑞,等.SiO2溶胶配比对气凝胶隔热复合材料力学性能的影响[J].复合材料学报,2010,27(6):179.
4 Chen Y, Shao G F, Wu X D, et al. Advances in polymer aerogels [J]. Materials Review A: Review Papers,2016,30(7):55(in Chinese).
陈颖,邵高峰,吴晓栋,等.聚合物气凝胶研究进展[J].材料导报:综述篇,2016,30(7):55.
5 Feng J, Wang X, Jiang Y, et al. Study on thermal conductivities of aromatic polyimide aerogels [J]. ACS Applied Materials & Interfaces,2016,8(20):12992.
6 Yan P, Zhou B, Du A. Synthesis of polyimide cross-linked silica aerogels with good acoustic performance [J]. RSC Advances,2014,4:59252.
7 Pajonk G M. Aerogel catalysts [J]. Applied Catalysis,1991,72(2):217.
8 Rao A V, Hwgde N D, Hirashima H. Absorption and desorption of organic liquids in elastic super hydrophobic silica aerogels [J]. Journal of Colloid Interface Science,2007,305(1):124.
9 Pekala R W, Alviso C T, Kong F M, et al. Aerogels derived from multifunctional organic monomers [J]. Journal of Non-Crystalline Solids,1992,145:90.
10 Rigacci A, Marechal J C, Repoux M, et al. Preparation of polyurethane-based aerogels and xerogels for thermal superinsulation [J]. Journal of Non-Crystalline Solids,2004,350:372.
11 Lee J K, Gould G L, Rhine W. Polyurea based aerogel for a high performance thermal insulation material [J]. Journal of Sol-gel Science and Technology,2009,49(2):209.
12 Malakooti S, Churu H G, Lee A, et al. Sound insulation properties in low-density, mechanically strong and ductile nanoporous polyurea aerogels [J]. Journal of Non-Crystalline Solids,2017,476:36.
13 Chin S F, Romainor A N B, Pang S C. Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity [J]. Materials Letters,2014,115:241.
14 Lopes J M, Mustapa A N, Pantic′ M, et al. Preparation of cellulose aerogels from ionic liquid solutions for supercritical impregnation of phytol [J]. The Journal of Supercritical Fluids,2017,130:17.
15 Matsuura T, Yamada N, Nishi S, et al. Polyimides derived from 2,2′-bis (trifluoromethyl)-4,4′-diaminobiphenyl Ⅲ: Property control for polymer blends and copolymerization of fluorinated polyimides [J]. Macromolecules,1993,26(3):419.
16 Meador M A B, Malow E J, Silva R, et al. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine [J]. ACS Applied Materials & Interfaces,2012,4(2):536.
17 Wu Y W, Ye M F, Zhang W C, et al. Polyimide aerogels crosslinked through cyclic ladder-like and cage polyamine functiona-lized polysilsesquioxanes [J]. Journal of Applied Polymer Science,2017,134(37):45296.
18 Shen D, Liu J, Yang H, et al. Highly thermally resistant and flexible polyimide aerogels containing rigid-rod biphenyl, benzimidazole, and triphenylpyridine moieties: Synthesis and characterization [J]. Chemistry Letters,2013,42(12):1545.
19 Guo H, Meador M A B, McCorkle L, et al. Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquio-xane[J]. ACS Applied Materials & Interfaces,2011,3(2):546.
20 Jiang Y, Zhang T, Wang K, et al. Synthesis and characterization of rigid and thermostable polyimide aerogel crosslinked with tri (3-aminophenyl) phosphine oxide [J]. Journal of Porous Materials,2017,24(5):1.
21 Meador M A B, Alemaán C R, Hanson K, et al. Polyimide aerogels with amide cross-links: A low cost alternative for mechanically strong polymer aerogels [J]. ACS Applied Materials & Interfaces,2015,7(2):1240.
22 Chen Y, Shao G, Kong Y, et al. Facile preparation of cross-linked polyimide aerogels with carboxylic functionalization for CO2 capture [J]. Chemical Engineering Journal,2017,322:1.
23 Yu H, Liang X, Wang J, et al. Preparation and characterization of hydrophobic silica aerogel sphere products by co-precursor method [J]. Solid State Sciences,2015,48:155.
24 Guo J, Nguyen B N, Li L, et al. Clay reinforced polyimide/silica hybrid aerogel [J]. Journal of Materials Chemistry A,2013,1(24):7211.
25 Ren H, Zhu J, Bi Y, et al. Facile fabrication of mechanical monolithic polyamide aerogels via a modified sol-gel method [J]. Journal of Sol-gel Science and Technology,2017,82(2):417.
26 Nguyen B N, Meador M A B, Scheiman D, et al. Polyimide aerogels using triisocyanate as cross-linker [J]. ACS Applied Materials & Interfaces,2017,9(32):27313.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed