Abstract: Titanium and titanium alloys which hold the advantages of high specific strength, favorable corrosion resistance and low-temperature performance, high thermal strength, etc., have become a kind of critical structural materials in aerospace industry, and moreover, have displayed considerable application potential for aeroengine heat-enduring parts owing to superior high-temperature performance compared with aluminum alloys and magnesium alloys. In 1954, the United States developed the first practical high-temperature titanium alloy Ti-6Al-4V which possesses a long-term use temperature range of 300—350 ℃ and a pleasurable comprehensive performance, and acquired extensive and long-lasting application. With the continuous progress of the aerospace industry, especially the advent of aeroengines, other countries successively developed some higher-working-temperature titanium alloys, among which IMI834, as the world’s first 600 ℃ high temperature titanium alloy, was created in 1984 by the United Kingdom. The typical feature of IMI834 is the addition of 0.06% C into the existing Ti-Al-Sn-Zr-Mo-Si titanium alloy system, expanding the processing window and optimizing the microstructure. After that, the United States obtained a high temperature titanium alloy Ti1100 in 1988, by adjusting the amount of some alloying elements in the original high-temperature titanium alloy Ti-6542S. In 1992, Russia also established its high temperature titanium alloy BT36 by substituting 5% W (a high-melting-point element) for 1% Nb within BT18Y. China’s research of high-temperature titanium alloy started relatively late, initially imitated foreign alloys, and later specia-lized in utilizing rare earth elements to design high-temperature titanium alloys. The Ti60 and Ti600 alloys, developed by IMR (CAS)/BaoTi Group and NIN respectively, both have the working temperature of 600 ℃ and favorable comprehensive performance. In general, the upper temperature limit of high-temperature titanium is difficult to exceed 600 ℃ at present. Sufficient studies have proved that the nearly ineliminable mismatch between thermal strength and thermal stability and the steep-oxidation-resistance-decay-induced severe surface oxidation at above 600 ℃ will result in the deterioration of thermal stability and fatigue properties, and even, the risk of “titanium fire” for those components serving in the high-pressure compressor section of an aeroengine.
This review is concerned with the worldwide development status of 600 ℃ and above high-temperature titanium alloys. We give introductions for the 600 ℃ high-temperature titanium alloys including Ti1100 (US), IMI834 (UK), BT36 (Russia), and Ti60/TG6/Ti600 (China), as well as the 600 ℃-above ones including Ti65/Ti750 (China). The major nations’ design schemes of high-temperature titanium alloys and the obstacles to raising the upper temperature limit are outlined, and some possible solutions are put forward. The paper ends with a prospective discussion over the future trends of high-temperature titanium alloys, from the perspectives of controlling the size, morphology and content of α2 phase and adjusting the hot working process.
1 李淼泉,罗皎,等.钛合金精密锻造[M].北京:科学出版社,2016. 2 许国栋,王桂生,莫畏.钛材生产、加工与应用500问[M].北京:化学工业出版社,2011. 3 Zhu Zhishou. Recent research and development of titanium alloys for aviation application in China[J].Journal of Aeronautical Materials,2014,34(4):44(in Chinese). 朱知寿.我国航空用钛合金技术研究现状及发展[J].航空材料学报,2014,34(4):44. 4 何丹琪,石颢.钛合金在航空航天领域中的应用探讨[J].中国高新技术企业,2016(27):50. 5 Winstone M R, Partridge A, Brooks J W. The contribution of advanced high-temperature materials to future aero-engines[J].Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design & Applications,2001,215(2):63. 6 Cai Jianming, Cao Chunxiao. Alloy design and application expectation of a new generation 600 ℃ high temperature titanium alloy[J].Journal of Aeronautical Materials,2014,34(4):27(in Chinese). 蔡建明,曹春晓.新一代600 ℃高温钛合金材料的合金设计及应用展望[J].航空材料学报,2014,34(4):27. 7 李成功,傅恒志,于翘.航空航天材料[M].北京:国防工业出版社,2002. 8 Huo Dongxing, Liang Jinglong, Li Hui, et al. Progress of research and application of titanium alloy[J].Foundry Technology,2016(10):2065(in Chinese). 霍东兴,梁精龙,李慧,等.钛合金研究及应用进展[J].铸造技术,2016(10):2065. 9 He Chunyan, Zhang Lijun. The development and application of high temperature titanium alloy at domestic and abroad[J].World Nonferrous Metals,2016(1):21(in Chinese). 何春艳,张利军.国内外高温钛合金的发展与应用[J].世界有色金属,2016(1):21. 10 Leyens C, Peters M. Titanium and titanium alloys[M]∥Titanium and Titanium Alloys-Fundamentals and Applications.DLR,2003:1. 11 Hui Songxiao, Zhang Zhu, Xiao Jinsheng,et al. Progress of research on thermal stability of high-temperature titanium alloys—Ⅰ.Metallurgical stability[J].Chinese Journal of Rare Metals,1999(2):125(in Chinese). 惠松骁,张翥,萧今声,等.高温钛合金热稳定性研究进展—Ⅰ.组织稳定性[J].稀有金属,1999(2):125. 12 Lütjering G. Influence of processing on microstructure and mechanical properties of ( α+β ) titanium alloys[J].Materials Science & Engineering A,1998,243(1-2):32. 13 Evans W J. Optimising mechanical properties in alpha+beta titanium alloys[J].Materials Science & Engineering A,1998,243(1):89. 14 Zou Wuzhuang. Application and prospect of titanium and titanium alloy in aerospace industry[J].China Nonferrous Metals,2016(1):70(in Chinese). 邹武装.钛及钛合金在航天工业的应用及展望[J].中国有色金属,2016(1):70. 15 Weiss I, Semiatin S L. Thermomechanical processing of beta tita-nium alloys—An overview[J].Materials Science & Engineering A,1998,243(1-2):46. 16 Doorbar P, Dixon M, Chatterjee A. Aero-engine titanium from alloys to composites[C]∥Materials Science Forum.QLD,Australia,2009:127. 17 Krishna V G, Prasad Y V R K, Birla N C, et al. Processing map for the hot working of near-α titanium alloy 685[J].Journal of Materials Processing Technology,1997,71(3):377. 18 Tuo Xiangming, Li Nan. Effect of yttrium on microstructure and properties of high temperature alloys[J].Chinese Journal of Rare Metals,1999(2):70. 19 魏寿庸,贾栓孝,王鼎春,等.550 ℃高温钛合金的性能[J].钛工业进展,2000(2):25. 20 Zeng Liying, Zhao Yongqing, Hong Quan,et al. Research and deve-lopment of high temperature titanium alloys at 600 ℃[J].Tianium Industry Progress,2012,29(5):1(in Chinese). 曾立英,赵永庆,洪权,等.600 ℃高温钛合金的研发[J].钛工业进展,2012,29(5):1. 21 Singh N, Singh V. Effect of temperature on tensile properties of near-α alloy Timetal 834[J].Materials Science & Engineering A,2008,485(1):130. 22 Boyer R R. An overview on the use of titanium in the aerospace industry[J].Materials Science & Engineering A,1996,213(1-2):103. 23 Rosenberger A H, Madsen A, Ghonem H. Aging effects on the creep behavior of the near-alpha titanium alloy Ti-1100[J].Journal of Materials Engineering and Performance,1995,4(2):182. 24 Cai Jianming, Hao Mengyi, Li Xueming,et al. Study on composition character and microstructure of bt36 high temperature Ti alloy[J].Journal of Materials Engineering,2000(2):10(in Chinese). 蔡建明,郝孟一,李学明,等.BT36高温钛合金的成分特点及组织研究[J].材料工程,2000(2):10. 25 Cai Jianming, Li Zhenxi, Ma Jimin,et al. Research and development of 600 ℃ high temperature titanium alloys for aeroengine[J].Mate-rials Review,2005,19(1):50(in Chinese). 蔡建明,李臻熙,马济民,等.航空发动机用600 ℃高温钛合金的研究与发展[J].材料导报,2005,19(1):50. 26 Xiao Jinsheng, Xu Guodong. Several ways to improve mechanical properties of high temperature Ti based alloys[J].Transactions of Nonferrous Metals Society of China,1997(4):97(in Chinese). 萧今声,许国栋.提高高温钛合金性能的途径[J].中国有色金属学报,1997(4):97. 27 赵永庆,陈永楠,张学敏.钛合金相变及热处理[M].长沙:中南大学出版社,2012. 28 Li G P, Liu Y Y, Li D, et al. Direct observation of the nucleation of rare-earth-rich phase particles in rapidly solidified Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd alloy[J].Journal of Materials Science Letters,1996,15(11):1003. 29 胡清熊,刘振球,魏寿庸,等.世纪之交的中国钛加工业——宝鸡有色金属加工厂钛加工的发展[C]∥面向21世纪的科技进步与社会经济发展.杭州,1999:344. 30 黄旭.先进航空钛合金材料与应用[M].北京:国防工业出版社,2012. 31 Zhang Shangzhou, Wang Qingjiang, Li Geping, et al. Coorrelation between heat-treatment windows and mechanical properties of high-temperature tianium alloys Ti-60[J].Acta Metallurgica Sinica,2002,38(z1):70(in Chinese). 张尚洲,王青江,李阁平,等.高温钛合金Ti-60热处理窗口与性能的关系[J].金属学报,2002,38(z1):70. 32 Tang Haifang. Study on microstucture and high temperature properties of Ti600 alloy[D].Shenyang:Dongbei University,2010(in Chinese). 汤海芳.Ti600合金组织和高温性能的研究[D].沈阳:东北大学,2010. 33 Wang Qingjiang, Liu Jianrong, Yang Rui. High temperature tita-nium alloys: Status and perspective[J].Journal of Aeronautical Materials,2014,34(4):1(in Chinese). 王清江,刘建荣,杨锐.高温钛合金的现状与前景[J].航空材料学报,2014,34(4):1. 34 Duan Rui, Cai Jianming, Li Zhenxi. Effect of primary α phase vo-lume fraction on tensile property and thermal stability of near-alpha TG6 titanium alloy[J].Journal of Aeronautical Materials,2007,27(3):17(in Chinese). 段锐,蔡建明,李臻熙.初生α相含量对近α钛合金TG6拉伸性能和热稳定性的影响[J].航空材料学报,2007,27(3):17. 35 Duan Rui, Zhanghua, Cai Jianming,et al. Effect of microstructure on creep deformation behavior of near-alpha titanium alloy TG6[J].The China Journal of Nonferrous Metals,2010,20(b10):11(in Chinese). 段锐,张华,蔡建明,等.显微组织对近α型TG6钛合金高温蠕变变形行为的影响[J].中国有色金属学报,2010,20(b10):11. 36 Wang Tao, Guo Hongzhen, Zhao Zhanglong,et al. Microstructure evolution and properties of TG6 alloy under the isothermal deformation condition[J].Rare Metal Materials and Engineering,2010,39(10):160(in Chinese). 王涛,郭鸿镇,赵张龙,等.TG6合金等温变形条件下组织演变与性能的研究[J].稀有金属材料与工程,2010,39(10):160. 37 Wang Tao, Guo Hongzhen, Zhang Yongqiang, et al. Effects of hot forging temperature on microstructure and mechanical property of TG6 high temperature titanium alloy[J].Acta Metallurgica Sinica,2010(8):913(in Chinese). 王涛,郭鸿镇,张永强,等.热锻温度对TG6高温钛合金显微组织和力学性能的影响[J].金属学报,2010(8):913. 38 Dai S J, Zhu Y T, Chen F. Present status and processing methods of novel β titanium alloys for biomedical applications[J].Journal of Chongqing University of Technology(Natural Science),2016,30(4):27(in Chinese). 戴世娟,朱运田,陈锋.新型医用β钛合金研究的发展现状及加工方法[J].重庆理工大学学报(自然科学),2016,30(4):27. 39 Liu Jingyuan. Superplastic formability and microstructure evolution of Ti750 high temperature titanium alloy[D].Harbin:Harbin Institute of Technology,2011(in Chinese). 刘泾源.Ti750高温钛合金超塑成形性能及组织演变研究[D].哈尔滨:哈尔滨工业大学,2011. 40 Zhao Yongqing. Research status of titanium alloys at domestic and abroad[J].China Metal Bulletin,2008(50):40(in Chinese). 赵永庆.国内外钛合金研究现状[J].中国金属通报,2008(50):40. 41 Xu Guodong, Wang Feng’e. Development and application on high-temperature Ti-based alloys[J].China Joural of Rare Metals,2008,32(6):774(in Chinese). 许国栋,王凤娥.高温钛合金的发展和应用[J].稀有金属,2008,32(6):774. 42 Tetsui T. Development of a TiAl turbocharger for passenger vehicles[J].Materials Science and Engineering A,2002,329-331(1):582. 43 Djanarthany S, Viala J C, Bouix J. An overview of monolithic tita-nium aluminides based on Ti3Al and TiAl[J].Materials Chemistry and Physics,2001,72(3):301. 44 Tetsui T. Gamma Ti aluminides for non-aerospace applications[J].Current Opinion in Solid State and Materials Science,1999,4(3):243. 45 Cai Jianming, Huang Xu, Cao Chunxiao,et al. Microstructural evolution of near-α titanium alloy during long-term high temperature exposure and its influence on thermal stability[J].Journal of Aeronautical Materials,2010,30(1):11(in Chinese). 蔡建明,黄旭,曹春晓,等.近α型钛合金长时高温暴露过程中显微组织演变及其对热稳定性的影响[J].航空材料学报,2010,30(1):11. 46 Cui W F, Liu C M, Zhou L, et al. Characteristics of microstructures and second-phase particles in Y-bearing Ti-1100 alloy[J].Materials Science & Engineering A,2002,323(1-2):192. 47 Wei Baomin, Tai Limin. Progress in Ti-Al-Sn-Zr-Mo-Si high tempe-rature titanium alloy[J].Special Casting&Nonferrous Alloys,2013(5):424(in Chinese). 魏宝敏,台立民.Ti-Al-Sn-Zr-Mo-Si系高温钛合金的研究进展[J].特种铸造及有色合金,2013(5):424. 48 Xin Shewei, Hong Quan, Lu Yafeng,et al. Research on surface stability of Ti600 high-temperature titanium alloy at 600 ℃[J].Rare Metal Materials and Engineering,2011,40(8):1422(in Chinese). 辛社伟,洪权,卢亚锋,等.Ti600高温钛合金600 ℃下表面稳定性研究[J].稀有金属材料与工程,2011,40(8):1422. 49 Xin Shewei, Zhao Yongqing. Inductions and discussions of solid state phase transformation of titanium alloy(Ⅵ)—Alpha[J].Tianium Industry Progress,2013(4):1(in Chinese). 辛社伟,赵永庆.钛合金固态相变的归纳与讨论(Ⅵ)——阿尔法[J].钛工业进展,2013(4):1. 50 Xin Shewei, Hong Quan, Lu Yafeng,et al. Research on microstructure stability of Ti600 high-temperature titanium alloy at 600 ℃[J].Rare Metal Materials and Engineering,2010,39(11):41(in Chinese). 辛社伟,洪权,卢亚锋,等.Ti600高温钛合金600 ℃下组织稳定性研究[J].稀有金属材料与工程,2010,39(11):41. 51 Koike J, Egashira K, Maruyama K, et al. High temperature strength of α, Ti Al alloys with a locally ordered structure[J].Materials Science & Engineering A,1996,213(1):98.52 Shamblen C E. Embrittlement of titanium alloys by long time, high temperature exposure[J].Metallurgical Transactions,1971,2(1):277. 53 Gysler A, Weissmann S. Effect of order in Ti3Al particles and of temperature on the deformation behavior of age-hardened Ti-Al alloys[J].Materials Science & Engineering,1977,27(2):181. 54 Peng Na. The research on the effect of α2 phase critical size in high-temperature titanium alloy[D].Shenyang:Shenyang University,2007(in Chinese). 彭娜.高温钛合金中α2相的临界尺寸效应研究[D].沈阳:沈阳大学,2007. 55 Kppers M, Herzig C, Friesel M, et al. Intrinsic self-diffusion and substitutional Al diffusion in α-Ti[J].Acta Materialia,1997,45(10):4181. 56 Kppers M. Self-diffusion and group Ⅲ (Al, Ga, In) solute diffusion in hcp titanium[J].Defect & Diffusion Forum,1997,143-147(1):43. 57 Li Wenyuan, Chen Zhiyong, Liu Jianrong, et al. Effect of texture on anisotropy at 600 ℃ in a near-α titanium alloy Ti60 plate[J].Mate-rials Science & Engineering A,2017,688:322. 58 Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60[J].Acta Materialia,2017,131:305. 59 Zhao Z B, Wang Q J, Liu J R, et al. Characterizations of microstructure and crystallographic orientation in a near-α titanium alloy billet[J].Journal of Alloys & Compounds,2017,712:179.