Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16136-16139    https://doi.org/10.11896/cldb.19120219
  金属与金属基复合材料 |
火箭橇滑块超声速、大载荷摩擦磨损失效机理
王玮华1,2, 谢发勤1, 吴向清1, 王少青1, 姚小飞1
1 西北工业大学航空学院,西安 710072;
2 航宇救生装备有限公司,襄阳 441003
Investigation on Friction and Wear Failure Mechanism of Rocket Sled Slide at Supersonic and Under High Load
WANG Weihua1,2, XIE Faqin1, WU Xiangqing1, WANG Shaoqing1, YAO Xiaofei1
1 School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China;
2 China Aerospace Life-support Industries, Ltd., Xiangyang 441003, China
下载:  全 文 ( PDF ) ( 4666KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了对超声速938 m/s、大载荷850 kg条件下0Cr18Ni9Ti火箭橇滑块的摩擦磨损失效机理进行分析,并揭示其磨损机理和硬度变化规律,选取某典型火箭橇试验后的滑块材料为研究对象,采用电子扫描显微镜、能谱仪和X射线衍射分析仪对滑块磨损后的表面微观形貌与磨损产物进行表征,使用维氏硬度计和金相显微镜对试样截面的组织结构和硬度进行了测试。研究发现,滑块表面主要发生了磨粒磨损和疲劳磨损,并在局部发生黏着磨损和氧化磨损,磨屑氧化生成的Fe3O4和沙砾等杂质填充和覆盖了磨损面的凿坑和沟槽;滑块纵截面方向1.6 mm厚度范围内,试样的硬度由外向内逐渐降低,同时,其发生晶粒细化并析出碳化物。结果表明,晶粒细化现象的出现和碳化物的析出说明磨损面温度在滑动过程中达到了材料的再结晶温度和相变温度,使得材料在滑动过程中的耐磨性严重下降。摩擦产生的高温使得滑块局部发生烧蚀,滑块在载荷和摩擦热综合作用下呈现多种磨损机制共存的典型现象,硬度沿截面方向呈梯度变化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王玮华
谢发勤
吴向清
王少青
姚小飞
关键词:  火箭橇  滑块  超声速  大载荷  摩擦磨损  失效分析    
Abstract: The work aimed to analyze the friction and wear failure mechanism, and to provide technical reference of rocket sled slide at supersonic 938 m/s and under high load 850 kg. The tested slide was selected as the experimental material. The wear surface morphology and the chemical compositions of the slide were characterized by scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD), the cross-sectional hardness was tested by Vickers hardness testing system, and the metallography micro-structure was observed by metallographic microscope. The wear mechanism of the tested slide was adhesive wear, abrasive particles wear, oxidation wear and fatigue wear. The oxidized debris of Fe3O4 and grit covered the gouges and grooves in the wear face. The cross-sectional hardness decreased outside-in 1.6 mm thickness, the grain size became finer and carbide precipitated. The grain refinement and carbide precipitation illustrated that the flash point temperature of the wear surface reached the recrystallization temperature, and the mechanical property of rocket sled slide declined. There was serious ablation caused by high temperature in the wear surface, and the coexistence of different wear mechanism, and the gradient variation of hardness was caused by high temperature and pressure during the sliding process.
Key words:  rocket sled    slide    supersonic    high load    friction and wear    failure mechanism
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TG147  
基金资助: 中国航空工业集团公司技术创新基金项目(2013F61050R)
通讯作者:  fqxie@nwpu.edu.cn   
作者简介:  王玮华,西北工业大学博士研究生,主要从事火箭橇试验理论与工程应用的研究。
谢发勤,西北工业大学民航学院党委书记,腐蚀防护研究所副所长。主要从事凝固技术与新材料,材料的腐蚀与防护等方面的教学与科研工作。
引用本文:    
王玮华, 谢发勤, 吴向清, 王少青, 姚小飞. 火箭橇滑块超声速、大载荷摩擦磨损失效机理[J]. 材料导报, 2020, 34(16): 16136-16139.
WANG Weihua, XIE Faqin, WU Xiangqing, WANG Shaoqing, YAO Xiaofei. Investigation on Friction and Wear Failure Mechanism of Rocket Sled Slide at Supersonic and Under High Load. Materials Reports, 2020, 34(16): 16136-16139.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120219  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16136
1 Wang Y, Liu K, Sun L Q, et al. Journal of Solid Rocket Technology, 2014, 37(6), 873(in Chinese).
王宇, 刘凯, 孙利清, 等. 固体火箭技术, 2014, 37(6), 873.
2 Yang Z, Fan K, Hu B, et al. Journal of Ordnance Equipment Enginee-ring, 2019, 40(3), 247(in Chinese).
杨珍, 范坤, 胡兵, 等. 兵器装备工程学报, 2019, 40(3), 247.
3 Cameron G J, Palazotto A. Wear, 2008, 265(7), 1066.
4 Cameron G J. Palazotto A. Tribology International, 2013, 32(5), 405.
5 Siopis M J, Neu R W. Wear, 2016, 352(11), 180.
6 Wang X H, Liu B, Xiao J, et al. Surface Technology, 2019, 48(3), 141(in Chinese).
汪笑鹤, 刘彬, 肖军, 等. 表面技术, 2019, 48(3), 141.
7 Wei Z K, Jiang L, Lv T. Missiles and Space Vehicles, 2017(6), 56(in Chinese).
魏宗康, 江麒, 吕腾. 导弹与航天运载技术, 2017(6), 56.
8 Zhang X Y, Gan X S, Gao B, et al. Journal of Solid Rocket Technology, 2016(6), 751(in Chinese).
张翔宇, 甘晓松, 高波, 等. 固体火箭技术, 2016(6), 751.
9 Wang Y, Liu K, Sun L Q, et al. Journal of Solid Rocket Technology, 2014(6), 873(in Chinese).
王宇, 刘凯, 孙利清, 等. 固体火箭技术, 2014(6), 873.
10 Dong L L, Zhang J J, Zhao J P. Journal of Southwest Jiaotong University, 2015, 50(6), 1170(in Chinese).
董龙雷, 张静静, 赵建平. 西南交通大学学报, 2015, 50(6), 1170.
11 Cinnamon J D, Palazotto A N. International Journal of Impact Enginee-ring, 2009, 36(5), 254.
12 Wang B Y, Wu X Q, Xie F Q. Lubrication Engineering, 2014, 39(1), 80(in Chinese).
王伯阳, 吴向清, 谢发勤. 润滑与密封, 2014, 39(1), 80.
13 Juan P, Jenny Z, Marie L, et al. Wear, 2015, 330(1), 280.
14 Menapace C, Leonardi M, Matejka V, et al. Wear, 2018, s398(7), 191.
15 Saeid Z, Mahmood N, Hossein R. Journal of Hazardous Materials, 2018, 344(13), 258.
16 Fuminari Y, Takuhiro H, Yuta S, et al. Acta Materialia, 2019, 177(8), 96.
17 Lu H H, Li W Q, Du L Y, et al. Materials Science & Engineering A, 2019, 754(19), 502.
[1] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[2] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[3] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[4] 黄文豪, 陶平均, 龙德武, 张超汉, 朱坤森, 杨元政. 低树脂基NAO型盘式刹车片摩擦材料的制备及摩擦学性能[J]. 材料导报, 2020, 34(Z1): 563-566.
[5] 徐骏, 朱立坚, 刘刚, 宋炳坷. DLC-PFPE固液复合润滑体系的摩擦磨损性能研究[J]. 材料导报, 2020, 34(Z1): 567-571.
[6] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[7] 李梦楠, 赵宇光, 谢同伦. 不同蠕化率蠕墨铸铁的干滑动摩擦磨损性能[J]. 材料导报, 2019, 33(z1): 366-368.
[8] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[9] 庄伟彬, 田宗伟, 刘广柱, 孙跃军. 原位自生TiCp/6061复合材料的组织、硬度及耐磨性能[J]. 材料导报, 2019, 33(22): 3762-3767.
[10] 聂豫晋, 戴建伟, 章晓波. Mg-3Gd-1Zn合金在模拟体液中的腐蚀与磨损协同作用[J]. 材料导报, 2019, 33(18): 3057-3061.
[11] 惠阳, 刘贵民, 闫涛, 杜林飞, 周雳. 载流摩擦磨损研究现状及展望[J]. 材料导报, 2019, 33(13): 2272-2280.
[12] 蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
[13] 李俊超, 朱丽娜, 马国政, 王海斗. 自润滑关节轴承质量检测及寿命评估研究现状[J]. 材料导报, 2018, 32(21): 3796-3804.
[14] 郭策安, 周峰, 胡明, 赵博远, 金浩, 张健. CrNi3MoVA钢表面磁控溅射Ta涂层的摩擦磨损性能[J]. 材料导报, 2018, 32(18): 3213-3216.
[15] 袁振军, 贺甜甜, 杜三明, 张永振. 硼铁含量对铜基粉末冶金制动材料性能的影响[J]. 材料导报, 2018, 32(18): 3223-3229.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed