Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3762-3767    https://doi.org/10.11896/cldb.18100185
  金属与金属基复合材料 |
原位自生TiCp/6061复合材料的组织、硬度及耐磨性能
庄伟彬,田宗伟,刘广柱,孙跃军
辽宁工程技术大学材料科学与工程学院,阜新 123000
Microstructure, Hardness and Wear Resistance Properties of In-situ TiCp/6061 Composites
ZHUANG Weibin, TIAN Zongwei, LIU Guangzhu, SUN Yuejun
College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000
下载:  全 文 ( PDF ) ( 3451KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用接触反应法制备了原位自生TiCp/6061复合材料,利用XRD和SEM对复合材料进行物相分析及微观形貌观察,用6061铝合金基体材料作为对比,研究了增强粒子含量对复合材料硬度和摩擦磨损行为的影响。结果表明,采用接触反应法,以Ti粉、C粉和Al粉作为生成TiC增强相的原材料,可直接在6061铝合金基体中原位生成TiC颗粒,TiC颗粒呈规则多边形,尺寸为0.5~1 μm。随着增强粒子含量的增加,原位自生TiCp/6061复合材料的硬度明显提高,T6热处理后5%(质量分数)的 TiCp/6061复合材料的硬度为120.5HBS,比基体6061铝合金提高了28.1%。这是TiC颗粒对6061基体材料的位错强化和细晶强化综合作用的结果。此外,随着增强粒子含量的提高,原位自生TiCp/6061复合材料的耐磨性也增强;T6热处理后,在100 N恒压作用下与GCR15材料对磨300 s,基体6061铝合金失重是5%(质量分数)TiCp/6061复合材料的2倍。其原因在于TiC颗粒含量的提高减小了对磨材料与复合材料的有效接触面积,从而增强了原位自生TiCp/6061复合材料的耐磨性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庄伟彬
田宗伟
刘广柱
孙跃军
关键词:  原位自生  TiCp/6061复合材料  微观组织  摩擦磨损    
Abstract: In-situ TiC particle reinforced 6061 aluminum matrix composites were manufactured by contact reaction. Phase analysis and microstructure observation of the in-situ TiCp/6061 composites were conducted by XRD and SEM, respectively. Taking the 6061 aluminum alloy matrix as comparison, the impact of the mass fraction of reinforcing particles on hardness, friction and wear behavior of the in-situ TiCp/6061 composites was explored. The contact reaction was carried out with Ti powder, C powder and Al powder as raw materials, the direct and in-situ formation of TiC particles could be achieved in 6061 aluminum alloy. The in-situ formed TiC particles presented regular polygons with a size of 0.5—1 μm. The increase of TiC particle content would give rise to a notable improvement in hardness of in-situ TiCp/6061 composites. After heat treatment of T6, the hardness of 5wt% TiCp/6061 composites reached 120.5HBS, 28.1% higher than that of 6061 aluminum alloy, which might be attributed to the combined action of dislocation strengthening and fine grain strengthening of the in-situ formed TiC particles on 6061 matrix materials. Meanwhile, the growing mass content of TiC particles would also bring about the enhancement in wear resistance of in-situ TiCp/6061 compo-sites. After heat treatment of T6, and grinding with GCR15 under constant pressures of 100 N for 300 s, the mass loss of matrix 6061 aluminum alloy was twice of that of the 5wt% TiCp/6061 composite. The reason of this phenomenon is that the increase of TiC particles content lead to the reduction of the effective contact area between the grinding material and the composites, thus the in-situ TiCp/6061 composites with higher TiC particle mass content perform satisfactory wear resistance.
Key words:  in-situ formation    TiCp/6061 composites    microstructure    friction and wear
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TB331  
基金资助: 国家自然科学基金青年基金(51601085);辽宁省自然科学基金(20180551116)
作者简介:  庄伟彬,辽宁工程技术大学讲师,2013年10月,在东北大学获得材料学专业工学博士学位,毕业后开始在辽宁工程技术大学工作。以第一作者身份在国内外学术期刊上发表论文8篇,申请国家发明专利4项。主要研究金属基复合材料的制备及性能,主持辽宁省自然科学基金和辽宁省博士科研启动基金各一项。
孙跃军,辽宁工程技术大学教授,硕士生导师。2009年1月获得北京航空航天大学材料学专业工学博士学位。1996年7月至今在辽宁工程技术大学材料科学与工程学院工作。主要研究铝合金的强韧化机理及应用。以第一作者身份发表学术论文50余篇。
引用本文:    
庄伟彬, 田宗伟, 刘广柱, 孙跃军. 原位自生TiCp/6061复合材料的组织、硬度及耐磨性能[J]. 材料导报, 2019, 33(22): 3762-3767.
ZHUANG Weibin, TIAN Zongwei, LIU Guangzhu, SUN Yuejun. Microstructure, Hardness and Wear Resistance Properties of In-situ TiCp/6061 Composites. Materials Reports, 2019, 33(22): 3762-3767.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100185  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3762
[1] Zhao Y, Ma X, Zhao X, et al. Journal of Alloys & Compounds, 2017, 726, 1053.
[2] Hao S M, Mao J W, Xie J P. Powder Metallurgy Industry, 2018, 28(1), 56(in Chinese).郝世明, 毛建伟, 谢敬佩. 粉末冶金工业, 2018, 28(1), 56.
[3] Sajjadi S A, Ezatpour H R, Beygi H. Materials Science & Engineering A, 2011, 528(29-30), 8765.
[4] Pan Liwen, Tang Jingfan, Lin Weijuan, et al.Materials Review A:Review Papers, 2015, 29(8), 1(in Chinese).潘利文, 唐景凡, 林维捐, 等. 材料导报:综述篇, 2015, 29(8), 1.
[5] Liu X, Liu Y, Huang D, et al. Materials Science & Engineering A, 2017, 705, 55.
[6] Ding H, Liu Q, Wang X, et al. Journal of Alloys & Compounds, 2018, 766, 66.
[7] Zhao Y, Ma X, Chen H, et al. Materials & Design, 2017, 131, 23.
[8] Wu R R, Li Q S, Guo L, et al. Acta Materiae Compositae Sinica, 2017, 34(6), 1334(in Chinese).吴瑞瑞, 李秋书, 郭璐, 等. 复合材料学报, 2017, 34(6), 1334.
[9] Kumar A, Gautam R K, Tyagi R. Composite Interfaces, 2016, 23(6), 469.
[10] Lijay K, SelvamJ, Dinaharan I, et al.Transactions of Nonferrous Metals Society of China, 2016, 26(7), 1791.
[11] Yang H B, Gao T, Wu Y Y, et al. Journal of Alloys and Compounds, 2018, 767, 606.
[12] Shangguan D, Ahuja S, Stefanescu D M. Metallurgical Transactions A, 1992, 23(2), 669.
[13] Zhang D F, Tan G, Liu L, et al. Heat Treatment of Metals, 2015, 40(11), 184(in Chinese).张德芬, 谭盖, 刘璐, 等. 金属热处理, 2015, 40(11), 184.
[14] Wu C J, Chen G L, Qiang W J. Metal Material Science, Metallurgical Industry Press, China,2008(in Chinese).吴承建, 陈国良, 强文江. 金属材料学, 冶金工业出版社, 2008.
[15] Pandey U, Purohit R, Agarwal P, et al. Materials Today Proceedings, 2017, 4(4), 5452.
[16] Wen S Z, Huang P. Principles of Tribology(Third Edition), Tsinghua University Press, China, 2008(in Chinese).温诗铸, 黄平. 摩擦学原理(第三版), 清华大学出版社, 2008.
[17] Bhushan B, Ge S R. Introduction to Tribology, Machine Press, China, 2006(in Chinese).Bhushan B 著, 葛世荣译. 摩擦学导论, 机械工业出版社, 2006.
[1] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[2] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[3] 周勇, 赵飞, 高倩, 孙良, 董会, 翟文彦. Sn含量对Al-Zn合金组织与溶解性能的影响[J]. 材料导报, 2019, 33(Z2): 406-409.
[4] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[5] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[6] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[7] 李梦楠, 赵宇光, 谢同伦. 不同蠕化率蠕墨铸铁的干滑动摩擦磨损性能[J]. 材料导报, 2019, 33(z1): 366-368.
[8] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[9] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[10] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[11] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[12] 张永皞, 孟玉堂, 范啟超, 孙明艳, 黄姝珂. “近单相”型NiTiNb形状记忆合金研究进展[J]. 材料导报, 2019, 33(19): 3272-3276.
[13] 贾森森, 王永彪, 肖艳秋, 吴玉娟, 彭立明, 刘建秀, 刘新田. 镁合金微观组织的相场法模拟进展[J]. 材料导报, 2019, 33(19): 3306-3312.
[14] 聂豫晋, 戴建伟, 章晓波. Mg-3Gd-1Zn合金在模拟体液中的腐蚀与磨损协同作用[J]. 材料导报, 2019, 33(18): 3057-3061.
[15] 方继恒, 刘曦, 谢明, 胡洁琼, 王松, 张吉明, 杨有才, 陈永泰, 王塞北, 李再久. 过热度、传热系数以及高斯分布参数对Ag-28Cu-2Ni合金凝固组织的影响[J]. 材料导报, 2019, 33(18): 3077-3084.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed