Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3077-3084    https://doi.org/10.11896/cldb.18070192
  金属与金属基复合材料 |
过热度、传热系数以及高斯分布参数对Ag-28Cu-2Ni合金凝固组织的影响
方继恒1, 刘曦1, 谢明1, 胡洁琼1, 王松1, 张吉明1, 杨有才1, 陈永泰1, 王塞北1, 李再久2
1 昆明贵金属研究所,昆明 650106
2 昆明理工大学材料科学与工程学院,昆明 650093
Effect of Superheat, Heat Transfer Coefficient and Gaussian Distribution Parameters on Solidification Structure of Ag-28Cu-2Ni Alloy
FANG Jiheng1, LIU Xi1, XIE Ming1, HU Jieqiong1, WANG Song1, ZHANG Jiming1, YANG Youcai1, CHEN Yongtai1, WANG Saibei1, LI Zaijiu2
1 Kunming Institute of Precious Metals, Kunming 650106
2 Department of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 5908KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于CAFE法(元胞自动机CA-有限元FE耦合模型),借助Procast软件对水冷铜模浇铸条件下合金的三维微观组织结构进行模拟,模拟结果与实验结果一致。此外,研究了工艺参数(过热度和传热系数)以及高斯分布参数(平均过冷度、成核密度和过冷度标准方差)对合金凝固组织的影响。模拟结果表明,随着过热度的增大,柱状晶比例逐渐增大,细小柱状晶的晶粒尺寸变大,且CET (柱状晶向等轴晶转变)转化位置向合金铸件内部推移。水冷条件下(传热系数h=5 000 W/(m2·K)),Ag-28Cu-2Ni合金凝固组织几乎全为柱状晶,而且晶粒粗大。空冷条件下(传热系数h=2 000 W/(m2·K)),柱状晶区缩小,等轴晶区占主要部分。缓冷条件下(传热系数h=10 W/(m2·K)),铸件的凝固组织几乎全为等轴晶。此外,平均过冷度越高,柱状枝晶区域越大。最大成核密度越大,晶粒尺寸越小。随着标准偏差增大,晶粒分布更加离散化,且晶粒尺寸分布更加均匀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方继恒
刘曦
谢明
胡洁琼
王松
张吉明
杨有才
陈永泰
王塞北
李再久
关键词:  元胞自动机CA-有限元FE耦合模型(CAFE)  微观组织  过热度  传热系数  高斯分布参数    
Abstract: Based on the CAFE method (cellular automaton-finite element coupling model), the three-dimensional microstructure under the water-cooled copper mold casting conditions was simulated with the help of Procast software, the simulation results are in agreement with the experimental results. In addition, the effect of the process parameters (superheat and heat transfer coefficient) and the Gauss distribution parameters (the nucleation undercooling (ΔTv(s),max), the maximum nucleation density (nv(s),max), and the standard deviation of nucleation undercooling (ΔTv(s),σ) on the solidification structure of the alloy was also studied. The simulation results show that with the increase of superheat, the proportion of columnar crystals gradually increases, the grain size of the fine columnar crystals increases, and the CET (columnar to equiaxed transition) transformation position shifts to the interior of the alloy casting. Under the condition of water cooling (h=5 000 W/(m2·K)), the solidification structure of Ag-28Cu-2Ni alloy is almost all columnar crystals, and the grain is coarse. Under the condition of air cooling (h=2 000 W/(m2·K)), the columnar crystal region shrinks, and the equiaxed crystal area occupy the major part. Under the condition of slow cooling (h=10 W/(m2·K)), the solidification structure of the casting is almost entirely equiaxed crystals. Furthermore, the higher the mean undercooling, the larger the columnar dendrite zones, and the larger the maximum nucleation density, the smaller the size of grains. The larger the standard deviation, the more discrete the grain distribution, and the more uniform the grain size distribution.
Key words:  cellular automata-finite element (CAFE)    microstructure    superheat    heat transfer coefficient    Gaussian distribution parameter
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TG21  
基金资助: 国家重点基础研究发展计划项目(2017YFB0305700);国家自然科学基金(U1602271;51707087;U1602275);云南省重大科技项目(2018ZE011;2018ZE012;2018ZE022;2018ZE026);云南省应用基础研究计划项目(2018FB088)
通讯作者:  powder@ipm.com.cn   
作者简介:  方继恒,2017年毕业于昆明贵金属研究所材料学专业,同年进入昆明贵金属研究所研发中心粉体室工作,主要从事稀贵金属材料的凝固实验和计算模拟工作。近年来以第一作者身份发表SCI/EI论文8篇。
谢明,博士研究生导师,研究员。获国务院政府“特殊津贴”、云南省“云岭学者”等称号。主持和参与完成国家“八五”科技攻关、863计划、国家科技支撑计划、国家基金重点项目(NSFC-云南联合基金)、国家重点军工、工信部强基工程、2017年国家重点研发计划等重大科技项目50余项。荣获国家、省部级科技进步奖16项、云南省科技进步科技创新团队一等奖1项;荣获国家发明专利20余项,在国内外有影响的学术刊物和会议上发表学术论文100余篇,其中被SCI、EI收录30余篇;编写国家军工、国家标准和企业标准10余项,参与撰写《粉末冶金手册》《材料大百科全书》《电工合金产品应用手册》等。
引用本文:    
方继恒, 刘曦, 谢明, 胡洁琼, 王松, 张吉明, 杨有才, 陈永泰, 王塞北, 李再久. 过热度、传热系数以及高斯分布参数对Ag-28Cu-2Ni合金凝固组织的影响[J]. 材料导报, 2019, 33(18): 3077-3084.
FANG Jiheng, LIU Xi, XIE Ming, HU Jieqiong, WANG Song, ZHANG Jiming, YANG Youcai, CHEN Yongtai, WANG Saibei, LI Zaijiu. Effect of Superheat, Heat Transfer Coefficient and Gaussian Distribution Parameters on Solidification Structure of Ag-28Cu-2Ni Alloy. Materials Reports, 2019, 33(18): 3077-3084.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070192  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3077
[1] McFadden S, Browne D J. Applied Mathematical Modelling, 2009, 33(3), 1397.
[2] Guillemot G, Gandin C A, Combeau H, et al. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 545.
[3] Zhu M F, Kim J M, Hong C P. ISIJ International, 2001, 41, 436.
[4] Zhu M F, Hong C P. ISIJ International, 2001, 41, 992.
[5] Martorano M A, Biscuola V B. Modelling and Simulation in Materials Science and Engineering, 2006, 14, 1225.
[6] Carozzani T, Digonnet H, Gandin C. Modelling and Simulation in Materials Science and Engineering, 2012, 1, 015010.
[7] Vutova K, Koleva E, Mladenov G. International Review of Mechanical Engineering, 2009, 2(5), 257.
[8] Zhao X H, Li J S, Yang Z J, et al. Journal of Shanghai Jiaotong University, Science, 2011, 16(3), 272.
[9] Zhang Y J, Kou H C, Li P E, et al. Special Casting & Nonferrous Alloys, 2012, 5(32), 418(in Chinese).张颖娟,寇宏超,李鹏飞,等. 特种铸造及有色合金, 2012, 5(32), 418.
[10] Xia Y J, Wang F M, Li S R, et al. Journal of Central South University of Technology, 2012, 9(19), 240.
[11] Kou H C, Zhang Y J, Li P E, et al. Rare Metal Materials and Enginee-ring, 2014, 7(43), 1537.
[12] Wu S P, Liu D R, Guo J J, et al. Materials Science and Engineering A, 2006, 1(2), 240.
[13] Gandin C A, Rappaz M, Tintillier R. Metallurgical and Materials Tran-sactions. A, 1993, 24(2), 467.
[14] Takatani H, Gandin C A, Rappaz M. Acta Materialia, 2000, 48, 675.
[15] Zaeem M A, Yin H, Felicelli S D. Journal of Materials Science & Technology, 2012, 28(2), 137.
[16] Zaeem M A, Yin H, Felicelli S D. Applied Mathematical Modelling, 2013, 37(5), 3495.
[17] Park E M, Song G A, Lee J K, et al. Journal of Alloys and Compounds, 2011, 509(37), 9015.
[18] Zhao S, Li J, Liu L, et al. Journal of Crystal Growth, 2009, 311(5), 1387.
[19] Cagran C, Wilthan B, Pottlacher G. Thermo-Chimica Acta, 2006, 445(2), 104.
[20] Yang Y F, Xie M, Cheng Y, et al. Materials Review A:Review Papers, 2014, 28(11), 24(in Chinese).杨云峰,谢明,程勇,等. 材料导报:综述篇, 2014, 28(11), 24.
[21] Wang J, Wang F, Zhao Y, et al. International Journal of Minerals, Me-tallurgy and Materials, 2009, 16(6), 640.
[22] Rappaz M, Gandin C A. Acta Metallurgica et Materialia, 1993, 2(41), 345.
[23] Gandin C A, Rappaz M. Acta Metallurgica et Materialia Acta, 1994, 7(42), 2233.
[24] Kur W, Giovanolab B, Trivedi R. Acta Metallurgica, 1986, 34, 823.
[25] Gandin C A, Desbiolles J L, Rappaz M, et al. Metallurgical and Mate-rials Transactions A, 1999, 12(30), 3153.
[26] Grujicic M, Cao G, Figliola S R. Applied Surface Science, 2001, 1(2), 43.
[27] Zagrebelnyy D, Krane M J M. Metallurgical and Materials Transactions B, 2009, 40(3), 281.
[28] Grujicic M, Cao G, Figliola S R. Journal of Materials Synthesis and Processing, 2002, 10(4), 191.
[29] Reiter G, Maronnier V, Sommitsch C, et al. In: Proceedings of Liquid Metals Processing and Casting Symposium. Nancy, France, 2003, pp. 77.
[30] Yang Z J, Zhao X H, Kou H C, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(10), 1957.
[31] Stefanescu D M. Science and engineering of casting solidification, Sprin-ger Verlag, US, 2008.
[32] Dong L N, Zhang J X. Rare Metal Materials & Engineering, 2013, 42(3), 655.
[33] Nastac L, Sundarraj S, Yu K O, et al. In: Proceeding of the Internatio-nal Symposium on Liquid Metals Processing and Casting. Santa Fe, NM,1997, pp. 145.
[34] Ignaszak Z, Hajkowski M, Hajkowski J. Materials Science, 2006, 12(2), 124.
[35] Cagran C, Wilthan B, Pottlacher G. Thermo-Chimica Acta, 2006, 445(2), 104.
[36] McLean M. Directly solidified materials for high temperature Service, The Metals Society, UK, 1983.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[4] 卢林, 吴文恒, 龙倩蕾, 张亮, 张济山. 喷射成形工艺参数对沉积坯质量的影响[J]. 材料导报, 2019, 33(3): 390-394.
[5] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[6] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[7] 张永皞, 孟玉堂, 范啟超, 孙明艳, 黄姝珂. “近单相”型NiTiNb形状记忆合金研究进展[J]. 材料导报, 2019, 33(19): 3272-3276.
[8] 贾森森, 王永彪, 肖艳秋, 吴玉娟, 彭立明, 刘建秀, 刘新田. 镁合金微观组织的相场法模拟进展[J]. 材料导报, 2019, 33(19): 3306-3312.
[9] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[10] 王剑豪, 薛松柏, 吕兆萍, 王刘珏, 刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[11] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[12] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[13] 蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
[14] 丁雨田, 马元俊, 豆正义, 刘建军, 高钰璧, 孟斌. 固溶处理温度对GH3625合金热挤压管材微观组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1311-1317.
[15] 张金祥, 欧阳希, 周健, 张济山. Cr含量降低对H13钢组织与力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1323-1327.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[6] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed