Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2133-2145    https://doi.org/10.11896/cldb.18080003
  材料与可持续发展(二)-材料绿色制造与加工* |
纳米颗粒增强无铅钎料的研究进展
王剑豪,薛松柏,吕兆萍,王刘珏,刘晗
南京航空航天大学材料科学与技术学院,南京 211106
Present Research Status of Lead-free Solder Reinforced by Nanoparticles
WANG Jianhao, XUE Songbai, LYU Zhaoping, WANG Liujue, LIU Han
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106
下载:  全 文 ( PDF ) ( 52352KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电子产业的发展离不开封装材料的进步。随着科学技术的进步,电子器件集成度逐渐提高,引脚尺寸和间距不断减小,而电子产品的服役条件也日趋复杂,因此对钎料的性能要求越来越严苛。与无铅钎料相比,传统的SnPb钎料因为成本低廉、性能优异,得到了电子工业的青睐。随着人们环保意识的提高,有毒元素铅在电子产业中的使用受到了限制,推动了电子封装材料朝着无铅化发展。但是目前,无铅钎料合金体系均存在成本高、润湿性差、可靠性不足、熔化特性与生产体系不匹配等问题,难以满足电子工业发展的需要。因此,探索改善无铅钎料性能的方法,研发性能优异的无铅钎料以替代SnPb钎料成为电子封装领域研究的一个热点。
目前无铅钎料改性的研究主要集中在微合金化和纳米颗粒增强两个方面。微合金化就是向钎料中添加微量的合金元素,通过改变钎料合金成分来改善钎料的组织性能。无铅钎料微合金化的研究起步较早,目前已经取得了大量的研究成果,添加如Ag、In等元素均可以显著改善钎料的力学性能和可靠性,其中稀土元素由于活性较高,被视为无铅钎料合金化的理想合金元素。但是微合金化只能部分地提高钎料的性能,还不能满足生产的需要。纳米材料以其特殊的尺寸效应和优异的理化特性而受到广泛关注,同时纳米颗粒作为增强材料,在改善金属材料组织性能方面也具有非常明显的作用。将细小的纳米颗粒弥散地分布于钎料基体中,能够显著影响无铅钎料的性能,这也是一个较为新颖的研究方向。常见的纳米增强颗粒主要有金属纳米颗粒、氧化物纳米颗粒、陶瓷纳米颗粒和碳基材料纳米颗粒等。
本文综合评述了纳米颗粒增强无铅钎料的研究进展。首先对目前纳米颗粒复合无铅钎料的三种制备方法的工艺特点进行了介绍;然后讨论了不同类型的纳米颗粒对SnAgCu、SnZn、SnBi和SnCu几种应用广泛的无铅钎料组织性能的影响,如微观组织、力学性能、润湿性能、熔化特性和可靠性等,同时对纳米颗粒增强无铅钎料的作用机理进行了分析;最后整理了目前纳米颗粒增强无铅钎料存在的不足,并对其未来的发展趋势进行了分析与展望,以期能够为未来无铅钎料的研究提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王剑豪
薛松柏
吕兆萍
王刘珏
刘晗
关键词:  纳米颗粒  无铅钎料  直接混合法  电化学沉积法  原位生成法  微观组织  润湿性能    
Abstract: The development of electrical industry comes with the improvement of packaging materials. Advancements in science and technology has put much emphasis on the properties of solder alloy because the electronics is developing towards increasingly higher integrated level, finer pitch and severer service conditions. Compared with lead-free solder alloys, the traditional SnPb solder was widely used in the electrical industry due to its low cost and excellent properties. However the application of Pb is prohibited currently due to its toxicity and lead-free solder alloy has become the trend in electronical packaging material. But presently, lead-free solder alloys have some disadvantages, such as high cost, poor wettability and reliability, unsatisfactory melting property, which fail to meet the demand of electrical industry. Therefore, searching the method to improve the properties of lead-free solder seems to be worthy of attention and is a critical topic for the design of excellent lead-free solder to substitute SnPb solder alloy.
So far, researches on modified lead-free solder are concentrated in microalloying and nanoparticles strengthening. Microalloying is to improve the properties of lead-free solder by doping alloy elements, such as Ag, In and rare earth elements. A great number of researches on lead-free solders modified with alloy elements have been carried out in the past decades but they are all proved to only improve a few properties of solders, which do not come up to the expected standard. Nanomaterials have attracted great attention due to their special size and property, and moreover as the ideal reinforcement, nanoparticles could influence the microstructure and performance of metal materials. The properties of lead-free solder alloy could be significantly enhanced by dispersed nanoparticles in solder matrix, the majority of which are metal nanoparticle, oxide nanoparticle, ceramic nanoparticle and carbon-based nanoparticle.
In this paper, the present research status of lead-free solder alloy reinforced by nanoparticles is reviewed systematically. First of all, the cha-racteristics of three methods to prepare the composite lead-free solder alloy modified with nanoparticles are introduced. Then the effect of doping nanoparticles on the microstructure and properties of principal lead-free solder alloys is discussed respectively, such as SnAgCu, SnBi, SnZn, SnCu solder. In addition, the strengthening mechanism of nanoparticles is analyzed. Moreover, limitations of lead-free solder reinforced by nanoparticles are summarized and the development trends of researches on lead-free solder alloy reinforced by nanoparticles are forecasted to provide the reference for the future investigation of lead-free solders.
Key words:  nanoparticles    lead-free solder    direct mixing method    electrochemical deposition    in-situ generation method    microstructure    wetting property
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  TG425  
基金资助: 国家自然科学基金(51675269);江苏高校优势学科建设工程资助项目
作者简介:  王剑豪,2016年毕业于南京航空航天大学,获得工学学士学位。现为南京航空航天大学材料科学与技术学院博士研究生,在薛松柏教授的指导下进行研究。目前主要研究领域为先进连接技术。
薛松柏,南京航空航天大学材料科学与技术学院二级教授、研究员、博士研究生导师。长期以来专注于焊接材料及焊接工艺的研究,制定了五项国家标准、五项机械工业部行业标准并发布实施;主持完成了三十多项国家、部、市课题的研究,共取得主要科研成果三十余项。获得2016年国家科技进步奖二等奖、2014年教育部技术发明二等奖、国防科技进步奖三等奖、江苏省科技进步三等奖等。
引用本文:    
王剑豪, 薛松柏, 吕兆萍, 王刘珏, 刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
WANG Jianhao, XUE Songbai, LYU Zhaoping, WANG Liujue, LIU Han. Present Research Status of Lead-free Solder Reinforced by Nanoparticles. Materials Reports, 2019, 33(13): 2133-2145.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080003  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2133
1 Kang S J, Kocabas C, Ozel T, et al. Nature Nanotechnology, 2007, 2, 230.2 Wu J, Xue S, Wang J, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(12), 12729.3 Fawzy A, Fayek S A, Sobhy M, et al. Materials Science and Enginee-ring: A, 2014, 603, 1.4 Xu L Y, Zhang L S, Jing H Y, et al. Journal of Mechanical Engineering, 2018, 54(8), 151(in Chinese).徐连勇, 张舒婷, 荆洪阳,等. 机械工程学报, 2018, 54(8), 151.5 Yakymovych A, Mudry S, Shtablavyi I, et al. Materials Chemistry and Physics, 2016, 181, 470.6 Liu Y, Fu H, Sun F, et al. Journal of Materials Processing Technology, 2016, 238, 290.7 Chen G, Peng H, Silberschmidt V V, et al. Journal of Alloys and Compounds, 2016, 685, 680.8 Gain A K, Chan Y C, Yung W K C. Microelectronics Reliability, 2011, 51(12), 2306.9 Peng Y, Deng K. Composites Part A: Applied Science and Manufacturing, 2015, 73, 55.10 Zhang S, Chen Q. Composites Part B: Engineering, 2014, 58, 275.11 Chen H, Li Z, Wu Z, et al. Journal of Alloys and Compounds, 2005, 394(1), 282.12 Tsai Y D, Hu C C, Lin C C. Electrochimica Acta, 2007, 53(4), 2040.13 Sandnes E, Williams M E, Vaudin M D, et al. Journal of Electronic Materials, 2008, 37(4), 490.14 Mavoori H, Jin S. Journal of Electronic Materials, 1998, 27(11), 1216.15 Wang Z Y, Ba J, Ma Q, et al. Journal of Netshape Forming Engineering, 2018, 10(1), 82(in Chinese).王泽宇, 霸金, 马蔷,等. 精密成形工程, 2018, 10(1), 82.16 Drienovsky M, Trnkova L R, Martinkovic M, et al. Materials Science and Engineering: A, 2015, 623, 83.17 Shen J, Liu Y C, Gao H X. Journal of Materials Science: Materials in Electronics, 2007, 18(4), 463.18 Hwang S Y, Lee J W, Lee Z H. Journal of Electronic Materials, 2002, 31(11), 1304.19 Tai F, Guo F, Han M T, et al. Materials Science and Engineering: A, 2010, 527(15), 3335.20 Park S, Dhakal R, Lehman L, et al. Acta Materialia, 2007, 55(9), 3253.21 Sun L, Zhang L, Xu L, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(7), 7665.22 Zhu Z, Chan Y C, Chen Z, et al. Materials Science and Engineering: A, 2018, 727, 160.23 Tang Y, Luo S M, Huang W F, et al. Journal of Alloys and Compounds, 2017, 719, 365.24 Tsao L C, Chang S Y. Materials & Design, 2010, 31(2), 990.25 Sharma A, Baek B G, Jung J P. Materials & Design, 2015, 87, 370.26 Liu X D, Han Y D, Jing H Y, et al. Materials Science and Engineering: A, 2013, 562, 25.27 Jing H Y, Guo H J, Wang L X, et al. Journal of Alloys and Compounds, 2017, 702, 669.28 Gan G S, Du C H, Xu H B, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(10), 2875(in Chinese).甘贵生, 杜长华, 许惠斌,等. 中国有色金属学报, 2013, 23(10), 2875.29 Sharma A, Sohn H R, Jung J P. Metallurgical and Materials Transactions A, 2016, 47(1), 494.30 Gu Y, Zhao X, Li Y, et al. Journal of Alloys and Compounds, 2015, 627, 39.31 Shen J, Chan Y C. Journal of Alloys and Compounds, 2009, 477(1), 909.32 El-Daly A A, Elmosalami T A, Desoky W M, et al. Materials Science and Engineering: A, 2014, 618, 389.33 Shawkret, Sheng M, Luo L. Acta Metallurgica Sinica, 2000, 36(7), 697(in Chinese).肖克来提, 盛玫, 罗乐.金属学报, 2000, 36(7), 697.34 Zhou Y C, Pan Q L, Li W B, et al. Transactions of Nonferrous Metals Society of China, 2008, 18(9), 1651(in Chinese).周迎春, 潘清林, 李文斌,等. 中国有色金属学报, 2008, 18(9), 1651.35 Haseeb A S M A, Leng T S. Intermetallics, 2011, 19(5), 707.36 Zhang L, Han J G, Liu F G, et al. Rare Metal Materials and Enginee-ring, 2013, 42(9), 1897(in Chinese).张亮, 韩继光, 刘凤国,等. 稀有金属材料与工程, 2013, 42(9), 1897.37 Tsao L C. Journal of Alloys and Compounds, 2011, 509(33), 8441.38 Sharma A, Xu D E, Chow J, et al. Electronic Materials Letters, 2015, 11(6), 1072.39 Yang Z, Zhou W, Wu P. Journal of Alloys and Compounds, 2013, 581, 202.40 Miao H W, Duh J G. Materials Chemistry and Physics, 2001, 71(3), 255.41 Sun H, Li Q, Chan Y C. Journal of Materials Science: Materials in Electronics, 2014, 25(10), 4380.42 Liu Y, Zhang H, Sun F. Journal of Materials Science: Materials in Electronics, 2016, 27(3), 2235.43 Li X, Ma Y, Zhou W, et al. Materials Science and Engineering: A, 2017, 684, 328.44 He P, L X C, Lin T S, et al. Transactions of Nonferrous Metals Society of China, 2012, 22, s692.45 Sun H, Chan Y C, Wu F. Materials Science and Engineering: A, 2016, 656, 249.46 Li Y, Chan Y C. Journal of Alloys and Compounds, 2015, 645, 566.47 Yang L, Dai J, Zhang Y, et al. Journal of Electronic Materials, 2015, 44(7), 2473.48 Ma Y, Li X, Zhou W, et al. Materials & Design, 2017, 113, 264.49 He P, An J, Ma X, et al. Transactions of The China Welding Institution, 2011, 32(9), 9(in Chinese).何鹏, 安晶, 马鑫,等. 焊接学报, 2011, 32(9), 9.50 Yang L, Zhou W, Liang Y, et al. Materials Science and Engineering: A, 2015, 642, 7.51 Yang F, Zhang L, Liu Z Q, et al. Advances in Materials Science and Engineering, 2016, 2016, 15.52 Liu X, Huang M, Wu C M L, et al. Journal of Materials Science: Mate-rials in Electronics, 2010, 21(10), 1046.53 Gain A K, Zhang L. Journal of Materials Science: Materials in Electro-nics, 2016, 27(4), 3982.54 Xu D X, Wang D B, Lei Y P. Advanced Materials Research, 2011, 154-155, 1012.55 Wei X, Huang H, Zhou L, et al. Materials Letters, 2007, 61(3), 655.56 Zhang H, Liu Y, Sun F, et al. Microelectronics International, 2017, 34(1), 40.57 Gu X, Yang D, Chan Y C, et al. Journal of Materials Research, 2008, 23(10), 2591.58 Yang Q L, Shang J K. Journal of Electronic Materials, 2005, 34(11), 1363.59 Tu K N. Physical Review B, 1992, 45(3), 1409.60 Ismathullakhan S, Lau H, Chan Y C. Microsystem Technologies, 2013, 19(7), 1069.61 Hu T, Li Y, Chan Y C, et al. Microelectronics Reliability, 2015, 55(8), 1226.62 Zhang R H, Xu G C, Tai F, et al. Rare Metal Materials and Enginee-ring, 2011(s2), 45(in Chinese).张睿竑, 徐广臣, 邰枫,等. 稀有金属材料与工程, 2011(s2), 45.63 Wu Y, Wei X Q, Zhou L, et al. Materials Review, 2005, 19(6), 60(in Chinese).吴一, 魏秀琴, 周浪,等. 材料导报, 2005, 19(6), 60.64 Wei G Q, Kuang M, Yang Y Q, et al. Transactions of The China Welding Institution, 2007, 28(5), 105(in Chinese).卫国强, 况敏, 杨永强.焊接学报, 2007, 28(5), 105.65 Ahmed M, Fouzder T, Sharif A, et al. Microelectronics Reliability, 2010, 50(8), 1134.66 Xing W Q, Yu X Y, Li H, et al. Materials Science and Engineering: A, 2016, 678, 252.67 Xue P, Xue S, Shen Y, et al. Materials & Design, 2014, 60, 1.68 Fouzder T, Li Q, Chan Y C, et al. Journal of Materials Science: Mate-rials in Electronics, 2014, 25(6), 2529.69 Peng C, Shen J, Yin H. Journal of Materials Science: Materials in Electronics, 2013, 24(1), 203.70 Tai F, Guo F, Xia Z D, et al. Journal of Materials Science: Materials in Electronics, 2010, 21(7), 702.71 Li Y, Bingbing S, Yaocheng Z, et al. Materials Research Express, 2018, 5(8), 086301.72 Wu J, Xue S, Wang J, et al. Journal of Materials Science: Materials in Electronics, 2018, 29(9), 7372.73 Xing W, Yu X, Li H, et al. Journal of Alloys and Compounds, 2017, 695, 574.74 Lai Z M, Zhang L, Wang J X. Transactions of The China Welding Institution, 2011, 32(11), 77(in Chinese).赖忠民, 张亮, 王俭辛.焊接学报, 2011, 32(11), 77.75 Liu S, Xue S B, Xue P, et al. Journal of Materials Science: Materials in Electronics, 2015, 26(7), 4389.76 Gain A K, Chan Y C, Yung W K C. Materials Science and Engineering: B, 2009, 162(2), 92.77 Yoon J W, Noh B I, Jung S B. Journal of Alloys and Compounds, 2010, 506(1), 331.78 Kim J H, Lee Y C, Lee S M, et al. Microelectronic Engineering, 2014, 120, 77.79 Sharif A, Chan Y C. Materials Science and Engineering: A, 2007, 445-446, 686.80 Sharif A, Chan Y C, Zhong H W. Journal of Materials Research, 2011, 22(1), 40.81 Gain A K, Chan Y C, Sharif A, et al. Microelectronics Reliability, 2009, 49(7), 746.82 Zhong X L, Gupta M. Journal of Physics D: Applied Physics, 2008, 41(9), 095403.83 Mohd Salleh M A A, McDonald S D, Gourlay C M, et al. Journal of Electronic Materials, 2016, 45(1), 154.84 Somidin F, Mohd Salleh M A A, Khairel R A. Advanced Materials Research, 2013, 620, 105.85 Mohd Salleh M A A, McDonald S D, Gourlay C M, et al. Materials & Design, 2016, 108, 418.86 Ramli M I I, Saud N, Salleh M A A M, et al. Microelectronics Reliability, 2016, 65, 255.87 Tai F, Guo F, Shen H, et al. Rare Metal Materials and Engineering, 2010, 39(6), 1005(in Chinese).邰枫, 郭福, 申灏,等. 稀有金属材料与工程, 2010, 39(6), 1005.88 Han Y F, Xu J, Guo X X, et al. Chinese Journal of Materials Research, 2009, 23(1), 69(in Chinese).闫焉服, 徐健, 郭晓晓,等. 材料研究学报, 2009, 23(1), 69.89 Salleh M A A M, Bakri A M M A, Zan M H, et al. Materials Science and Engineering: A, 2012, 556, 633.90 Salleh M A A M, McDonald S D, Nogita K. Journal of Materials Processing Technology, 2017, 242, 235.91 Zhu Z, Sun H, Chan Y C, et al. In: 2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC). Singapore, 2015, pp. 192 Zandén C, Luo X, Ye L, et al. Composites Science and Technology, 2014, 94, 54.93 Sujan G K, Haseeb A S M A, Afifi A B M. Materials Characterization, 2014, 97, 199.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[4] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[5] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[6] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[7] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[8] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[9] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[10] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[11] 胡燕燕,杨春林,乔慧娜,欧梅桂. 钆基稀土纳米颗粒的制备及应用研究进展[J]. 材料导报, 2019, 33(13): 2243-2251.
[12] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[13] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[14] 王迎军, 黄雪连, 陈军建, 梁阳彬, 熊梦华. 细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗[J]. 材料导报, 2019, 33(1): 5-15.
[15] 蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed