Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22160-22165    https://doi.org/10.11896/cldb.20060283
  高分子与聚合物基复合材料 |
生物炭中溶解性有机质与Cu(Ⅱ)的络合机制研究
张军1,2, 王薇1,2, 储刚1,2, 周丹丹1,2, 赵婧1,2, 王琳1,2, 李芳芳1,2
1 昆明理工大学环境科学与工程学院,昆明 650500
2 云南省土壤固碳与污染控制重点实验室,昆明 650500
Complexation Between Cu(Ⅱ) and Dissolved Organic Matter from Biochar
ZHANG Jun1,2, WANG Wei1,2, CHU Gang1,2, ZHOU Dandan1,2, ZHAO Jing1,2, WANG Lin1,2, LI Fangfang1,2
1 Faculty of Environmental Science and Engineering,Kunming University of Science and Technonlogy, Kunming 650500, China
2 Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
下载:  全 文 ( PDF ) ( 2040KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物炭是废弃生物质在厌氧条件下热解产生的固体产物,因其具有多孔、含氧官能团、比表面积较大及矿物质较为丰富等优点而在重金属污染土壤修复方面具有良好的应用前景。生物炭对重金属迁移性的影响因素有重金属特性、生物炭固体颗粒及其所含溶解性有机质(DOM)的特性。生物炭进入环境后,生物炭中的DOM易随环境介质发生迁移转化且DOM含有较丰富的含氧官能团,其与重金属的相互作用对重金属的迁移转化有重要影响。然而,生物炭DOM的特性受生物炭母质来源和热解温度的影响,不同源生物炭中DOM与重金属相互作用机制尚不明确。因此,深入研究生物炭DOM与重金属之间的相互作用机制对评估生物炭对重金属的迁移影响至关重要。本研究采用多种光谱技术,探讨了生物炭中DOM的组成及其与Cu(Ⅱ)的络合特性。结果表明, SUVA254DOM和 SUVA260 DOM 属于芳香性很低的亲水性材料,且玉米秸秆生物炭DOM(MDOM)浓度高于松木生物炭DOM(PDOM)浓度;三维荧光光谱鉴定出DOM主要由类腐殖酸和类富里酸构成;与PDOM相比,MDOM中含有更多的荧光物质(类富里酸和类腐殖酸),为其与Cu(Ⅱ)的络合提供了结合位点,因此其络合稳定常数高于PDOM;1H-NMR证明DOM中酚羟基官能团与Cu(Ⅱ)发生了明显的络合作用。本研究将为生物炭作为功能性材料在环境修复中的应用提供筛选依据以减低其环境风险。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张军
王薇
储刚
周丹丹
赵婧
王琳
李芳芳
关键词:  生物炭  溶解性有机质(DOM)  Cu(Ⅱ)  荧光淬灭  结合能力    
Abstract: Biochar is a solid product produced by pyrolysis of waste biomass under anaerobic oxygen conditions. Because of its porosity, large specific surface area, rich oxygen-containing functional groups, rich minerals and so on, biochar has been widely used in the remediation of heavy metal contaminated soils. The migration effect of biochar on heavy metals is affected by not only the properties of heavy metals and the solid particles of biochar, but also the dissolved organic matter from biochar. Dissolved organic matter(DOM) from biochars has significant mobility after the application of biochars in the environment. The interaction between functional groups of DOM and heavy metals is an important mechanism of heavy metal migration and transformation. The characteristics of DOM are determined by the raw materials of biochars and pyrolysis temperature. However, DOM characteristics as affected by the interaction between DOM and heavy metals were not extensively studies. Therefore, in-depth study of the interaction between biochar DOM and heavy metals is essential to assess the impact of biochar on the migration of heavy metals. In this study, a variety of spectroscopic techniques were used to explore the composition of DOM in biochar and its complexing characteristics with Cu(Ⅱ). The results showed that the SUVA254 DOM and SUVA260 DOM belonged to hydrophilic materials with very low aromaticity, and the concentration of MDOM was higher than that of PDOM. The EEM identified that the mainly composed of DOM were fulvic-like acid and humic-like acid. The MDOM has more fluorescent substances (fulvic-like acid and humic-like acid) that provide binding sites for Cu(Ⅱ), thus making the complexation stability constant higher than PDOM. 1H-NMR proved that the phenolic hydroxyl groups of DOM have obvious complexation with Cu(Ⅱ).This study will provide a screening basis for the application of biochar as a functional material in environmental remediation, and reduce its environmental risk.
Key words:  biochar    dissolved organic matter (DOM)    Cu(Ⅱ)    fluorescence quenching    bound characterization
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  X131.2  
基金资助: 国家自然科学基金(41703121;41703111);昆明理工大学人才启动项目(KKSY201722006;KKSY201506058);云南省重点研发计划资助(2018BC004)
通讯作者:  01yongheng@163.com   
作者简介:  张军,2015年在鲁东大学获得学士学位,2019年在昆明理工大学获得硕士学位,在国内外学术期刊上发表学术论文6篇。主要研究方向为重金属污染物环境行为机理研究,参与国家自然科学基金项目1项,省级项目1项。
周丹丹,昆明理工大学副教授,硕导。2011年9月至2016年6月,在昆明理工大学获得环境科学专业工学博士学位。研究领域为主要围绕碳基材料,开展关于控制污染物环境行为的基础理论和应用研究。2011年以来,发表学术论文25余篇,其中9篇被SCI收录,2篇EI收录;申请专利7项。目前,主持国家自然科学基金青年基金项目1项、省部级项目1项;作为研究骨干人员参与国家重点研发和云南省重点研发项目各1项。
引用本文:    
张军, 王薇, 储刚, 周丹丹, 赵婧, 王琳, 李芳芳. 生物炭中溶解性有机质与Cu(Ⅱ)的络合机制研究[J]. 材料导报, 2021, 35(22): 22160-22165.
ZHANG Jun, WANG Wei, CHU Gang, ZHOU Dandan, ZHAO Jing, WANG Lin, LI Fangfang. Complexation Between Cu(Ⅱ) and Dissolved Organic Matter from Biochar. Materials Reports, 2021, 35(22): 22160-22165.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060283  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22160
1 Zhao F J, Ma Y, Zhu Y G, et al. Environmental Science & Technology, 2015, 49(2), 750.
2 Li H B, Dong X L, Silva E B, et al. Chemosphere, 2017, 178,466.
3 Zhou D D,Wang W, Zhang J,et al. Ecology and Environmental Sciences. 2019, 28(7),1492(in Chinese).
周丹丹, 王薇, 张军,等.生态环境学报, 2019,28(7), 1492.
4 Wei J, Tu C, Yuan G, et al. Science of the Total Environment, 2020, 701,1.
5 Qu X, Fu H, Mao J, et al. Carbon, 2016, 96,759.
6 Uchimiya M, Ohno T, He Z. Journal of Analytical and Applied Pyrolysis, 2013, 104,84.
7 Norwood M J, Louchouarn P, Kuo L J, et al. Organic Geochemistry, 2013, 56,111.
8 Qian L, Zhang W, Yan J, et al. Bioresource Technology, 2016, 206,217.
9 Chun Y, Sheng G Y, Chiou C T, et al. Environmental Science and Technology, 2004, 38(17),4649.
10 Huang M, Li Z, Luo N, et al. Science of The Total Environment, 2019,646,220.
11 Haiming W, Xu Y D, Hai L. Chemosphere, 2018,212, 638.
12 Tang J, Li X, Luo Y, et al. Chemosphere, 2016, 152, 399.
13 Plaza C, Brunetti G, Senesi N, et al. Environmental Science & Techno-logy, 2006, 40(3), 917.
14 Ryan D K, Weber J H. Analytical Chemistry, 1982, 54(6),12.
15 Smith D S, Kramer J R. Analytica Chimica Acta, 2000, 416(2),211.
16 Hays M D, Ryan D K, Pennell S. Analytical Chemistry, 2004, 76(3),848.
17 Pan B, Han X, Wu M, et al. Environmental Pollution, 2012, 171(4), 168.
18 Yun L, Munroe P, Joseph S, et al. Chemosphere, 2012,87(2),151.
19 Liu C H, Chu W, Li H, et al. Geoderma, 2019, 335,161.
20 Yeh Y L, Yeh K J, Hsu L F, et al. Journal of Hazardous Materials, 2014, 277(4), 27.
21 Selberg A, Viik M, Ehapalu K, et al. Journal of Hydrology, 2011, 400(1-2), 274.
22 Leenheer J A, Wershaw R L. Applied Geochemistry, 2003, 18(3), 471.
23 Wu F, Tanoue E. Environmental Science and Technology, 2001, 35(18),3646.
24 Guo W, Xu J, Wang J, et al. Journal of Environmental Sciences, 2010, 22(11), 1728.
25 Wang K F, Peng N, He J, Environmental Science & Technology, 2017, 40(10), 151(in Chinese).
王开峰, 彭娜, 何江,等.环境科学与技术, 2017, 40(10), 151.
26 Bai Y C, Wu F C, Liu C Q, et al. Analytica Chimica Acta, 2008, 616(1), 115.
27 da Silva J C E, Machado A A, Oliveira C J, et al. Talanta, 1998, 45(6), 1155.
28 Wang F, Huang Q H, Xiao Y H.China Environmental Science, 2012, 32(5),829(in Chinese).
王峰, 黄清辉, 肖宜华. 中国环境科学, 2012, 32(5), 829.
29 Hudson N, Baker A, Ward D, et al. Science of the Total Environment, 2008, 391(1), 149.
30 Hernandez D, Plaza C, Senesi N, et al. Environmental Pollution, 2006, 143(2), 212.
31 Wilson M A, Collin P J, Tate K R. Journal of Soil Science, 1983, 34,297.
32 Beer P D, Tite E L, Ibbotson A. Cheminform, 1989, 21(25), 1874.
33 Daniela S, Alessandro P. Environmental Science & Technology, 2008, 42(22), 8440.
34 Guéguen C, Burns D C, McDonald A, et al. Chemosphere, 2012, 87(8), 932.
35 Bartoszek M, Polak J, Sułkowski W W. Chemosphere, 2008, 73(9), 1465.
36 Yasuda S, Hamaguchi E, Asano K. Journal of Wood Science, 1999, 45(3), 245.
37 Gómez X, Blanco D, Lobato A, et al. Biodegradation, 2011, 22(3),623.
38 Silverstein R M, Bassler G C, Morrill T C. Journal of Chemical Education, 2014, 92(10), 826.
39 Tao Z Y, Jin Z, Zhai J J. Analytica Chimica Acta, 1999, 395(1-2), 199.
[1] 储洪强, 王婷婷, 张宇衡, 丁天云, 梁云超, 朱正宇. 氯盐-硫酸盐共存环境中杂散电流作用下提升砂浆中氯离子结合性能的研究[J]. 材料导报, 2021, 35(18): 18069-18075.
[2] 张香云, 杜进英, 袁子洲, 李金祺. Fe-Si-B非晶合金对溶液中Cu (Ⅱ)的去除效率[J]. 材料导报, 2020, 34(7): 7010-7014.
[3] 易鹏,吴国娟,段文焱,吴敏,潘波. 生物炭的改性和老化及环境效应的研究进展[J]. 材料导报, 2020, 34(3): 3037-3043.
[4] 常兆峰, 田路萍, 梁妮, 张朋超, 周丹丹, 张军, 吴敏. 苯多酸分子标志物法对NaClO氧化前后生物炭的性质描述[J]. 材料导报, 2019, 33(12): 2089-2094.
[5] 叶俊沛, 张盼月, 仙光, 张光明. 铁改性生物炭对啤酒废水厌氧消化产甲烷的促进作用研究[J]. 材料导报, 2018, 32(20): 3634-3637.
[6] 王耀, 梅向阳, 段正洋, 何昌华, 徐晓军, 解道雷, 徐龙乾, 黄启华. 生物炭及其复合材料吸附重金属离子的研究进展[J]. 《材料导报》期刊社, 2017, 31(19): 135-143.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed